Войти
Android, Windows, Apple, Ликбез. Социальные сети. Драйверы
  • Японские телефоны Новый японский смартфон
  • Lenovo G500S: характеристики, основные особенности
  • Определяем серию продукта видеокарт Nvidia Характеристики карты nvidia 9800 gt
  • А конкуренты у смартфона есть
  • Что такое расширение файла TRZ?
  • Не работает динамик в "айфоне"
  • Что означает аббревиатура omg в uml. Методология UML

    Что означает аббревиатура omg в uml. Методология UML

    Язык Unified Modelling Language (UML) можно считать результатом довольно длинной и еще не завершившейся эволюции методологий моделирования и дизайна.В 90-х годах наиболее популярными были три объектно-ориентированных подхода: OMT (автор Джеймс Рамбо), сильной стороной которого является анализ, а слабой - дизайн; OODA (автор Гради Буч) - сильная сторона этого языка - дизайн, а слабая - анализ; OOSE (автор Айвар Якобсон) - сильной стороной данного языка является анализ поведения (behavior analysis), однако в остальных областях он достаточно слаб.В результате соперничества этих методов авторы вышеперечисленных методологий создали унифицированный язык моделирования UML (рис. 1), который унаследовал присутствовавшие в других языках элементы. Далее приведена оригинальная терминология заимствованных/унаследованных элементов языка этой методологии - дело в том, что сейчас существует несколько вариантов переводов этих терминов на русский язык.Данная унификация преследовала три основные цели: моделирование системы, начиная с концепции и заканчивая исполняемым модулем, с применением объектно-ориентированных методик; разрешение проблем масштабирования в сложных системах; создание языка моделирования, используемого и человеком, и компьютером.Официальной датой начала работ по UML считают октябрь 1994 года, когда Рамбо перешел в компанию Rational (ныне Rational - одно из подразделений корпорации IBM). Последним стандартом этого языка является версия UML1.3, вышедшая в 1999 году.Средства UML-моделирования Является ли UML необходимым компонентом RUP? Да, безусловно. Но практика использования UML как средства описания процесса моделирования и разработки программного обеспечения не ограничивается RUP. Как и любой другой язык, UML - это всего только средство. В RUP предусмотрен ряд утилит, позволяющих довольно легко использовать UML, но их набор не ограничивается лишь продуктами IBM/Rational. Ниже приводится далеко не полный список некоторых продуктов, поддерживающих UML: Rational Rose (Rational Software, Windows 98/NT/2000/XP, Linux Red Hat 6.2, 7.0, Solaris 2.5.1, 2.6, 7, 8, HP-UX 10.20, 11.0, 11.i); Microsoft Visual Studio .NET Enterprise Architect, Microsoft Visio (Microsoft, платформы: Windows 8/NT/2000/XP/Server 2003); Describe Enterprise (Embarcadero technologies, платформы: Windows 98/NT/2000/XP); семейство продуктов Together (Borland, платформы: Windows 98/NT/2000/XP, Linux, Solaris);

    Bold for Delphi (Borland, платформы: Windows 98/NT/2000/XP);

    MagicDraw (Magic, Inc., платформы: Windows 98/Me/NT/2000/XP, Solaris, OS/2, Linux, HP-UX, AIX, Mac OS);

    QuickUML (ExcelSoftware, платформы: Windows 98/NT/2000/XP) - неплохая утилита для начинающих.


    Отметим также некоторые продукты OpenSourse, например ArgoUML, Novosoft UML Library.

    Документ, который содержит списки продуктов, поддерживающих UML, компаний-производителей, платформ, а также информацию о примерных ценах продуктов, можно найти по адресу: http://www.objectsbydesign.com/tools/umltools_byCompany.html.

    Следует также отметить, что, несмотря на факт существования стандарта UML 1.3, поддерживаемые перечисленными продуктами реализации UML или обладают собственными особенностями, или не полностью следуют стандарту, поэтому при выборе средства моделирования следует обращать внимание на поддерживаемые типы диаграмм и особенности синтаксиса. Кроме того, возможности прямого и обратного проектирования (Round-Trip Engineering) в разных продуктах весьма различны. Не все вышеуказанные продукты могут поддерживать языки программирования Java, C++, CORBA IDL, поэтому следует обращать особое внимание на то, какую модель сможет сгенерировать тот или иной продукт из имеющегося у вас кода, на каком языке может быть получен код из вашей UML-модели и какого она должна быть типа.Таблица, показывающая, какие диаграммы UML реализованы в том или ином продукте, находится по адресу: http://www.jeckle.de/umltools.htm.

    Для чего применяется UML

    UML - прежде всего язык, и, как всякое языковое средство, он предоставляет словарь и правила комбинирования слов в этом словаре. В данном случае словарь и правила фокусируются на концептуальном и физическом представлениях системы. Язык диктует, как создать и прочитать модель, однако не содержит никаких рекомендаций о том, какую модель системы необходимо создать, - это выходит за рамки UML и является прерогативой процесса разработки программного обеспечения. В связи с этим, видимо, UML довольно часто ассоциируют с RUP - одним из возможных процессов, рекомендующих, какие модели, как и когда нужно создавать для успешной разработки продукта.

    UML - это язык визуализации. Написание моделей на UML преследует одну простую цель - облегчение процесса передачи информации о системе. За каждым символом UML стоит строго определенная семантика, что позволяет избегать ошибок интерпретации (ответы на вопросы типа «а что имел в виду разработчик Х, когда он описал иерархию классов Y…» и т.п. будут достаточно прозрачны).

    UML - это язык спецификаций и точных определений. В этом смысле моделирование на UML означает построение моделей, которые точны, недвусмысленны и полны.

    UML - это язык конструирования. UML не является визуальным языком программирования, но модели в терминах UML могут быть отображены на определенный набор объектно-ориентированных языков программирования. UML предоставляет возможности прямого (существующая модель ® новый код) и обратного (существующий код ® новая модель) проектирования. Достаточно часто средства UML-моделирования реализуют отображения UML-моделей в коде на языках Java, C++, CORBA, VB, Smalltalk.

    UML - это язык документирования. Процесс разработки программного обеспечения предусматривает не только написание кода, но и создание таких артефактов, как список требований, описание архитектуры, дизайн, исходный код системы, планирование проекта, тесты, набор прототипов, релизы продукта. В зависимости от культуры разработки продукта в той или иной компании степень формализации данных документов существенно различается, варьируясь от строго определенных шаблонов и формата документов до разговоров на произвольную тему по e-mail или лично. Тем не менее все эти артефакты критичны для успешного процесса разработки продукта. UML предоставляет средства отображения требований к системе, построения документации, тестов, моделирования необходимых действий для планирования проекта и для управления поставленными конечному пользователю релизами.

    Язык Unified Modelling Language (UML) можно считать результатом довольно длинной и еще не завершившейся эволюции методологий моделирования и дизайна.

    В 90-х годах наиболее популярными были три объектно-ориентированных подхода:

    В результате соперничества этих методов авторы вышеперечисленных методологий создали унифицированный язык моделирования UML (рис. 1), который унаследовал присутствовавшие в других языках элементы. Далее приведена оригинальная терминология заимствованных/унаследованных элементов языка этой методологии - дело в том, что сейчас существует несколько вариантов переводов этих терминов на русский язык.

    Рис. 1. UML и его предшественники

    Данная унификация преследовала три основные цели:

    Моделирование системы, начиная с концепции и заканчивая исполняемым модулем, с применением объектно-ориентированных методик;

    Разрешение проблем масштабирования в сложных системах;

    Создание языка моделирования, используемого и человеком, и компьютером.

    Официальной датой начала работ по UML считают октябрь 1994 года, когда Рамбо перешел в компанию Rational (ныне Rational - одно из подразделений корпорации IBM). Последним стандартом этого языка является версия UML1.3, вышедшая в 1999 году.

    Средства UML-моделирования

    Является ли UML необходимым компонентом RUP? Да, безусловно. Но практика использования UML как средства описания процесса моделирования и разработки программного обеспечения не ограничивается RUP. Как и любой другой язык, UML - это всего только средство. В RUP предусмотрен ряд утилит, позволяющих довольно легко использовать UML, но их набор не ограничивается лишь продуктами IBM/Rational. Ниже приводится далеко не полный список некоторых продуктов, поддерживающих UML:

    Rational Rose (Rational Software, Windows 98/NT/2000/XP, Linux Red Hat 6.2, 7.0, Solaris 2.5.1, 2.6, 7, 8, HP-UX 10.20, 11.0, 11.i);

    Microsoft Visual Studio .NET Enterprise Architect, Microsoft Visio (Microsoft, платформы: Windows 98/NT/2000/XP/Server 2003);

    Describe Enterprise (Embarcadero technologies, платформы: Windows 98/NT/2000/XP);

    Семейство продуктов Together (Borland, платформы: Windows 98/NT/2000/XP, Linux, Solaris);

    Bold for Delphi (Borland, платформы: Windows 98/NT/2000/XP);

    MagicDraw (Magic, Inc., платформы: Windows 98/Me/NT/2000/XP, Solaris, OS/2, Linux, HP-UX, AIX, Mac OS);

    QuickUML (ExcelSoftware, платформы: Windows 98/NT/2000/XP) - неплохая утилита для начинающих.

    Отметим также некоторые продукты OpenSourse, например ArgoUML, Novosoft UML Library.

    Документ, который содержит списки продуктов, поддерживающих UML, компаний-производителей, платформ, а также информацию о примерных ценах продуктов, можно найти по адресу: http://www.objectsbydesign.com/tools/umltools_byCompany.html .

    Следует также отметить, что, несмотря на факт существования стандарта UML 1.3, поддерживаемые перечисленными продуктами реализации UML или обладают собственными особенностями, или не полностью следуют стандарту, поэтому при выборе средства моделирования следует обращать внимание на поддерживаемые типы диаграмм и особенности синтаксиса. Кроме того, возможности прямого и обратного проектирования (Round-Trip Engineering) в разных продуктах весьма различны. Не все вышеуказанные продукты могут поддерживать языки программирования Java, C++, CORBA IDL, поэтому следует обращать особое внимание на то, какую модель сможет сгенерировать тот или иной продукт из имеющегося у вас кода, на каком языке может быть получен код из вашей UML-модели и какого она должна быть типа.

    Таблица, показывающая, какие диаграммы UML реализованы в том или ином продукте, находится по адресу: http://www.jeckle.de/umltools.htm .

    Для чего применяется UML

    UML — прежде всего язык, и, как всякое языковое средство, он предоставляет словарь и правила комбинирования слов в этом словаре. В данном случае словарь и правила фокусируются на концептуальном и физическом представлениях системы. Язык диктует, как создать и прочитать модель, однако не содержит никаких рекомендаций о том, какую модель системы необходимо создать, — это выходит за рамки UML и является прерогативой процесса разработки программного обеспечения. В связи с этим, видимо, UML довольно часто ассоциируют с RUP — одним из возможных процессов, рекомендующих, какие модели, как и когда нужно создавать для успешной разработки продукта.

    UML — это язык визуализации. Написание моделей на UML преследует одну простую цель — облегчение процесса передачи информации о системе. За каждым символом UML стоит строго определенная семантика, что позволяет избегать ошибок интерпретации (ответы на вопросы типа «а что имел в виду разработчик Х, когда он описал иерархию классов Y…» и т.п. будут достаточно прозрачны).

    UML — это язык спецификаций и точных определений. В этом смысле моделирование на UML означает построение моделей, которые точны, недвусмысленны и полны.

    UML — это язык конструирования. UML не является визуальным языком программирования, но модели в терминах UML могут быть отображены на определенный набор объектно-ориентированных языков программирования. UML предоставляет возможности прямого (существующая модель ® новый код) и обратного (существующий код ® новая модель) проектирования. Достаточно часто средства UML-моделирования реализуют отображения UML-моделей в коде на языках Java, C++, CORBA, VB, Smalltalk.

    UML — это язык документирования. Процесс разработки программного обеспечения предусматривает не только написание кода, но и создание таких артефактов, как список требований, описание архитектуры, дизайн, исходный код системы, планирование проекта, тесты, набор прототипов, релизы продукта. В зависимости от культуры разработки продукта в той или иной компании степень формализации данных документов существенно различается, варьируясь от строго определенных шаблонов и формата документов до разговоров на произвольную тему по e-mail или лично. Тем не менее все эти артефакты критичны для успешного процесса разработки продукта. UML предоставляет средства отображения требований к системе, построения документации, тестов, моделирования необходимых действий для планирования проекта и для управления поставленными конечному пользователю релизами.

    Элементы языка

    Основными элементами UML являются сущности (Thing), отношения (Relationship), диаграммы (Diagram). Сущности являются ключевыми абстракциями языка, отношения связывают сущности вместе, диаграммы группируют коллекции сущностей, которые представляют интерес.

    Сущности

    Структурные сущности являются существительными языка (рис. 2). К ним относятся:

    классы (Class) — это набор объектов, разделяющих одни и те же атрибуты, операции, отношения и семантику. Класс реализует один или несколько интерфейсов и изображается виде прямоугольника, включающего имя класса, имена атрибутов, операций, примечание;

    интерфейсы (Interface) — это набор операций, которые определяют сервис класса или компоненты. Интерфейс графически изображается в виде круга и, как правило, присоединяется к классу или к компоненту, который реализует данный интерфейс;

    кооперации (Collaboration) — определяют взаимодействие и служат для объединения ролей и других элементов, которые взаимодействуют вместе так, что получающееся в результате поведение объекта оказывается большим, чем просто сумма всех элементов. Изображается в виде эллипса с пунктирной границей;

    Прецеденты (Use case) — описание набора последовательностей действий, которые выполняются системой и имеют значение для конкретного действующего лица (Actor). Прецеденты изображаются в виде эллипса и используются для структурирования поведенческих сущностей в модели;

    активные классы (Active class) — это классы, чьими экземплярами являются активные объекты, которые владеют процессом или потоком управления и могут инициировать управляющее воздействие. Стереотипами конкретного класса являются процесс (Process) и поток (Thread). Графически такой класс изображается как класс с жирной границей;

    компоненты (Component) — это физически заменяемые части системы, обеспечивающие реализацию ряда интерфейсов. Компонент — это физическое представление таких логических элементов, как классы, интерфейсы и кооперации. Предметная область компонентов относится к реализации. Изображаются компоненты в виде прямоугольника с ярлыками слева и, как правило, имеют только имя и примечание;

    узлы (Node) — физические объекты, которые существуют во время исполнения программы и представляют собой коммуникационный ресурс, обладающий, по крайней мере, памятью, а зачастую и процессором. На узлах могут находиться выполняемые объекты и компоненты. Изображаются узлы в виде куба, имеют имя и примечание.

    Данные перечисленных семи типов объектов являются базовыми структурными объектами UML. Существуют также вариации данных объектов, такие как действующие лица (Actor), сигналы (Signal), утилиты (Utility - вид класса), процессы и нити (Process и Thread - виды активного класса), приложения (Application), документы (document), файлы (File), библиотеки (Library), страницы (Page), таблицы (Table).

    Поведенческие сущности — это динамические части моделей UML (рис. 3). К ним относятся:

    взаимодействия (Interaction) — включают набор сообщений, которыми обмениваются указанные объекты с целью достижения указанной цели. Взаимодействие описывается в контексте кооперации и изображается направленной линией, маркируется именем операции сверху;

    автоматы (State machine) — спецификации поведения, представляющие собой последовательности состояний, через которые проходит в течение своей жизни объект, или взаимодействие в ответ на происходящие события (а также ответные действия объекта на эти события). Автомат прикреплен к исходному элементу (классу, кооперации или методу) и служит для определения поведения его экземпляров. Изображается автомат как прямоугольник с закругленными углами.

    Группирующие сущности — это организационные составляющие моделей UML. К ним относятся пакеты (Package) — обобщенный механизм для организации элементов в группы. Структурные, поведенческие, группирующие сущности могут быть помещены в пакет. Пакеты являются чисто концептуальными сущностями — в отличие от компонентов, существующих во время исполнения программы. Изображается пакет как папка с ярлыком сверху и, как правило, имеет только имя.

    Аннотационные сущности — это пояснительные составляющие моделей UML, к которым относятся примечания (Note) — пояснительные элементы языка (рис. 4). Они содержат текст комментария, изображаются в виде прямоугольника с загнутым уголком страницы.

    Отношения

    К базовым отношениям между объектами, которые позволяют строить блоки UML, можно отнести следующие (рис. 5):

    зависимость (Dependency) — это семантическое отношение между двумя сущностями, при котором изменение одной из них (независимой сущности) может отразиться на семантике другой (зависимой). Виды зависимостей, которые соответствуют нескольким видам отношений между объектами, перечислены ниже:

    - абстракция (Abstraction) — представляет собой изменение уровня абстрактности для некоторого понятия. Как правило, один из элементов, более абстрактный, а второй — более конкретный, хотя возможны ситуации, когда оба элемента являются двумя возможными вариантами понятия, существующими на одном уровне абстракции. К зависимости абстракции относятся следующие стереотипы (в порядке возрастания специфичности отношений): трассировать (Trace), уточнять (Refine), реализовать (есть собственная нотация) и выводить (Derive),

    - связывание (Binding) — связывает элемент с шаблоном. Аргументы, необходимые для параметров шаблона, прикреплены к зависимости связывания в виде списка,

    - комбинирование (Combination) — соотносит две части описания классификатора (любой элемент модели, описывающий определенные черты структуры и поведения системы), чтобы получить полное описание элемента,

    - разрешение (Permission) — зависимость (всегда изображается в виде особого стереотипа), связывающая тот или иной пакет (или класс) с другим пакетом (или классом), которому он предоставляет разрешение использовать свое содержимое. Стереотипами зависимости разрешения являются: быть доступным (Access), быть дружественным (Friend) и импортировать (Import),

    - использование (Usage) — описывает ситуацию, когда одному элементу для правильной реализации или функционирования требуется присутствие другого элемента. К стереотипам этого вида зависимости относятся: вызывать (Call), создать экземпляр (Instantiate), параметр (Parameter) и отправить (Send);

    ассоциация (Association) — структурное отношение, описывающее множество связей между объектами классификаторов, где связь (Link) — это соединение между объектами, которое описывает связи между их экземплярами. Ассоциации являются как бы клеем, который связывает систему воедино. Без ассоциаций мы имели бы просто некоторое количество классов, не способных взаимодействовать друг с другом. У ассоциации может быть имя, однако основную информацию об ассоциации следует искать у ее полюсов, где описывается, каким образом каждый объект участвует в ассоциации: у ассоциации есть список, состоящий из двух или более полюсов ассоциации: каждый из них определяет роль, которую играет данный классификатор в этой ассоциации. Один и тот же классификатор может играть несколько ролей, которые не являются взаимозаменяемыми. Каждый полюс ассоциации описывает свойства, применимые к конкретному объекту этой ассоциации, например сколько раз один объект может появляться в связях (множественность). Некоторые свойства (такие как допустимость навигации) применимы только к бинарным ассоциациям, хотя большинство свойств относится и к бинарным, и к n-арным ассоциациям;

    обобщение (Generalization) — это отношение специализации/обобщения, при котором объекты специализированного элемента (потомка — Child) можно подставить вместо объектов обобщенного элемента (родителя, предка — Parent). В случае обобщения классов прямой предок может именоваться суперклассом, а прямой потомок — подклассом;

    реализация (Realization) — отношение между спецификацией и ее программной реализацией; указание на то, что поведение наследуется без структуры.

    Мы перечислили четыре основных отношения. В UML также существуют их варианты: уточнение (Refinement), трассировка (Trace), включение (Include), расширение (Extend).

    Диаграммы UML

    Визуализация представления проектируемой системы с различных точек зрения в UML реализована посредством диаграмм - проекций системы. Диаграмма (Diagram) - это графическое представление множества элементов, которое изображается в виде связного графа с вершинами (сущностями) и ребрами (отношениями).

    Чаще всего UML рассматривает систему с пяти взаимосвязанных точек зрения (рис. 6).

    Представление с точки зрения прецедентов (Use case view) включает пользовательские истории, описывающие систему с точки зрения конечного пользователя, аналитика, тестера. Это представление не определяет структуру программного обеспечения, а существует для передачи общего представления о системе. В UML это отображается посредством диаграмм прецедентов (Use case diagram), динамический аспект представлен в диаграммах взаимодействий (Interaction diagram), состояний (Statechart diagram), активности (Activity diagram).

    Представление с точки зрения дизайна (Design view) включает классы, интерфейсы и кооперации, которые формируют словарь задачи и ее решение. Данное представление в первую очередь осуществляет поддержку функциональных требований к системе, значение сервисов, которые система должна предоставить конечному пользователю. В UML это отображается посредством диаграмм классов (Class diagram) и объектов (Object diagram), динамический аспект отображается в диаграммах взаимодействий, состояний, активности.

    Представление с точки зрения процессов (Process view) включает нити и процессы, которые формируют параллельную обработку и синхронизацию в системе. Данное представление в первую очередь относится к производительности, масштабируемости и пропускной способности системы. В UML статический и динамический аспекты отображаются теми же диаграммами, что и в Design view, но внимание акцентируется на активных классах, представляющих процессы и нити.

    Представление с точки зрения реализации (Implementation view) включает компоненты и файлы, используемые при сборке системы. Подобное представление в первую очередь относится к управлению конфигурациями (Configuration management) релизов продукта. Статический аспект в UML отображен диаграммой компонентов (Component diagram), а динамический - диаграммами взаимодействий, состояний, активности.

    Представление с точки зрения внедрения (Deployment view) включает узлы и их взаимодействие - они определяют аппаратную топологию, на которой выполняется программное обеспечение. Это представление в первую очередь относится к распространению, доставке, установке компонентов, из которых строится физическая система. Статический аспект в UML отображается диаграммой внедрения (Deployment diagram), а динамический - диаграммами взаимодействий, состояний, активности.

    Ниже приведены определения и примеры диаграмм:

    диаграмма классов (Class diagram) — структурная диаграмма, на которой показано множество классов, интерфейсов, коопераций и отношений между ними (рис. 7);

    диаграмма объектов (Object diagram) — структурная диаграмма, на которой показано множество объектов и отношений между ними. Ее можно считать особым случаем диаграммы классов. Инструментам моделирования не нужно поддерживать отдельный формат для диаграмм объектов. На них изображены объекты, поэтому диаграмма классов, на которой нет классов, но есть принадлежащие им объекты, может считаться диаграммой объектов;

    диаграмма прецедентов (Use case diagram) — диаграмма поведения, на которой показано множество прецедентов и актеров, а также отношений между ними (рис. 8);

    диаграммы взаимодействий (Interaction diagram) :

    - диаграмма последовательностей (Sequence diagram) — диаграмма поведения, на которой показано взаимодействие и подчеркнута временная последовательность событий (рис. 9),

    - диаграмма кооперации (Collaboration diagram) — диаграмма поведения, на которой показано взаимодействие и подчеркнута структурная организация объектов, посылающих и принимающих сообщения (рис. 10);

    диаграмма состояний (Statechart diagram) — диаграмма поведения, на которой показан автомат и подчеркнуто поведение объектов с точки зрения порядка получения событий (рис. 11);

    диаграмма активности (Activity diagram) — диаграмма поведения, на которой показан автомат и подчеркнуты переходы потока управления от одной деятельности к другой (рис. 12);

    диаграмма компонентов (Component diagram) — диаграмма, на которой изображена организация некоторого множества компонентов и зависимости между ними, — относится к статистическому виду системы (рис. 13);

    диаграмма топологии системы (Deployment diagram) — структурная диаграмма, на которой показаны узлы и отношения между ними (рис. 14).

    Продолжение следует.

    Достоинства UML

    • 1. UML объектно-ориентированный язык, в результате чего методы описания результатов анализа и проектирования семантически близки к методам программирования на современных ОО-языках;
    • 2. UML позволяет описать систему практически со всех возможных точек зрения и разные аспекты поведения системы;
    • 3. Диаграммы UML сравнительно просты для чтения после достаточно быстрого ознакомления с его синтаксисом;
    • 4. Сокращение числа возможных ошибок таких как: несогласованные параметры подпрограмм, несогласованное изменение атрибутов;
    • 5. Повторное использование. Предполагается какой-либо вариант многократного использования уже существующего проекта или его части в новом проекте;
    • 6. UML расширяет и позволяет вводить собственные текстовые и графические стереотипы, что способствует его применению не только в сфере программной инженерии;
    • 7. UML получил широкое распространение и динамично развивается.

    Недостатки UML

    Несмотря на то, что UML достаточно широко распространённый и используемый стандарт, его часто критикуют из-за следующих недостатков:

    • 1. Избыточность языка. UML часто критикуется, как неоправданно большой и сложный. Он включает много избыточных или практически неиспользуемых диаграмм и конструкций. Чаще это можно услышать в отношении UML 2.0, чем UML 1.0, так как более новые ревизии включают больше компромиссов.
    • 2. Неточная семантика. Так как UML определён комбинацией себя (абстрактный синтаксис), OCL (языком описания ограничений -- формальной проверки правильности) и Английского (подробная семантика), то он лишен скованности присущей языкам, точно определённым техниками формального описания. В некоторых случаях абстрактный синтаксис UML, OCL и Английский противоречат друг другу, в других случаях они неполные. Неточность описания самого UML одинаково отражается на пользователях и поставщиках инструментов, приводя к несовместимости инструментов из-за уникального трактования спецификаций.
    • 3. Проблемы при изучении и внедрении. Вышеописанные проблемы делают проблематичным изучение и внедрение UML, особенно когда руководство насильно заставляет использовать UML инженеров при отсутствии у них предварительных навыков.
    • 4. Только код отражает код. Ещё одно мнение -- что важны рабочие системы, а не красивые модели. Как лаконично выразился Джек Ривс, «The code is the design» («Код и есть проект»). В соответствии с этим мнением, существует потребность в лучшем способе написания ПО; UML ценится при подходах, которые компилируют модели для генерирования исходного или выполнимого кода. Однако этого всё же может быть недостаточно, так как UML не имеет свойств полноты по Тьюрингу и любой сгенерированный код будет ограничен тем, что может разглядеть или предположить интерпретирующий UML инструмент.
    • 5. Кумулятивная нагрузка/Рассогласование нагрузки (Cumulative Impedance/Impedance mismatch). Рассогласование нагрузки -- термин из теории системного анализа для обозначения неспособности входа системы воспринять выход другой. Как в любой системе обозначений UML может представить одни системы более кратко и эффективно, чем другие. Таким образом, разработчик склоняется к решениям, которые более комфортно подходят к переплетению сильных сторон UML и языков программирования. Проблема становится более очевидной, если язык разработки не придерживается принципов ортодоксальной объектно-ориентированной доктрины (не старается соответствовать традиционным принципам ООП).
    • 6. Пытается быть всем для всех. UML -- это язык моделирования общего назначения, который пытается достигнуть совместимости со всеми возможными языками разработки. В контексте конкретного проекта, для достижения командой проектировщиков определённой цели, должны быть выбраны применимые возможности UML. Кроме того, пути ограничения области применения UML в конкретной области проходят через формализм, который не полностью сформулирован, и который сам является объектом критики.
    • 7. Усложнение методологии. Применение объектно-ориентированного подхода требует введения дополнительных способов представления информации о предметной области и методов ее анализа. язык UML включает более 100 различных условных обозначений. Для успешного использования подобного механизма требуется наличие определенного уровня квалификации у специалистов. Для небольших проектов более эффективным может оказаться применение классических методов разработки. Разработка проектов, для которых важнейшей задачей является описание предметной области, и для которых невозможно найти человека, понимающего эту предметную область в целом также требует использования традиционных подходов, в виду их большей доступности для неспециалистов.

    В настоящее время фирма Rational Software является безусловным лидером в области объектно-ориентированного анализа и проектирования информационных систем с компонентной архитектурой. Разрабатываемая этой фирмой методология, основанная на использовании унифицированного языка моделирования (UML - Unified Modeling Language в настоящее время принят OMG в качестве стандарта), поддержана целым спектром инструментальных программных средств визуального моделирования, совместной разработки (поддерживаются основные языки программирования C++, Java, Visual Basic, SmallTalk и др., а также популярные среды разработки - MS Visual Studio, Delphi, PowerBuilder), автоматизированного тестирования и документирования, охватывающих жизненный цикл создания программных систем .

    Помимо Rational Rose, продукта фирмы Rational Software, к числу популярных средств визуального моделирования, поддерживающих стандарты UML, можно отнести Paradigm Plus (программный продукт фирмы PLATINUM Technology), SELECT (SELECT Software), Oracle Designer (Oracle), Together Control Center (Borland), AllFusion Component Modeler (Computer Associates) и Microsoft Visual Modeler (Rational Software&Microsoft Corporation).

    Rational Rose. Популярное средство визуального моделирования объектно-ориентированных информационных систем компании Rational Software Согр. Работа продукта основана на универсальном языке моделирования UML (Universal Modeling Language). Благодаря уникальному языку моделирования Rational Rose способен решать практически любые задачи в проектировании информационных систем: от анализа бизнес-процессов до кодогенерации на определенном языке программирования. Только Rose позволяет разрабатывать как высокоуровневые, так и низкоуровневые модели, осуществляя тем самым либо абстрактное проектирование, либо логическое .

    Rational Rose поддерживает прямое и обратное проектирование на языках: ADA, Java, С, C++, Basic. Поддерживает технологии COM, DDL, XML. Позволяет генерировать схемы Oracle и SQL.

    Rational Rose имеет открытый API, позволяющий создавать собственными силами модули для конкретных языков программирования.

    Select Yourdon. Эта система разработана фирмой Select Software Tools Ltd. (England). Select Yourdon поддерживает фазы анализа требований и проектирования программной системы, что покрывает полностью начальный период разработки вплоть до кодирования модулей. При этом поддерживаются следующие виды структурных методов (диаграмм) :

    • диаграммы отношения сущностей;
    • диаграммы потоков данных и управления, базирующиеся на нотации Yourdon/Ward & Mellor и Hatley;
    • диаграммы переходов состояний;
    • мини-спецификации процессов;
    • структурные диаграммы Константайна (Constantine);
    • структурные диаграммы Джексона (Jackson).

    Первые три вида диаграмм и мини-спецификации процессов могут использоваться для анализа и формулировки требований к ПО, последние два - для проектирования архитектуры ПО и его отдельных модулей. База данных проекта сосредоточена в так называемом словаре данных (Data Dictionary). Система поддерживает как однопользовательскую работу, так и работу в сети коллектива разработчиков.

    Oracle Designer. Набор инструментальных средств Oracle Designer предлагает интегрированное решение для разработки прикладных систем корпоративного уровня для Web и клиент/серверных приложений. Oracle Designer участвует в каждой фазе жизненного цикла разработки программного обеспечения - от моделирования бизнес- процессов до внедрения. Применение единого репозитория делает возможным использование любых его компонент для быстрой разработки масштабируемых, кросс-платформных распределенных приложений .

    Задачей Oracle Designer является сбор данных о потребностях пользователей и автоматизация построения гибких графических приложений. Oracle Designer используется не только для создания приложений, но и для ведения учета изменений, которые неизбежно происходят при эксплуатации системы.

    Графические модели определений проекта, интегрированные с многопользовательским репозиторием существенно облегчают работу с Oracle Designer. Инструментальные средства построены на базе общепринятых методик, охватывающих весь жизненный цикл разработки. Это обеспечивает гибкость и открытость подхода к разработке программного обеспечения за счет использования только тех частей продукта, которые требуются в данной задаче. В рамках процесса разработки обеспечивается поддержка методов RAD, JAD, информационного проектирования, водопадного метода (waterfall), итеративного метода, а также индивидуального подхода, выбранного компанией.

    Microsoft Visual Modeler. Microsoft Visual Modeler (MSVM) - инструмент визуального моделирования, разработанный Rational Software совместно c Microsoft Corporation, обеспечивает базируемое на UML моделирование для проектирования приложений на основе компонентов. Модели, созданные с использованием MSVM, могут автоматически выполнять генерацию объектного кода для проектов, реализуемых в средах разработки Visual Basic 6.0 и Visual C++ .

    Microsoft Visual Modeler поддерживает архитектуру Windows-распределенных интернет-приложений (Windows DNA), которая позволяет разработчикам уровня предприятия строить масштабируемые, многоуровневые бизнес-приложения, которые могут быть установлены в любой сети.

    Последняя версия Microsoft Visual Modeler предлагает беспрецедентный уровень интеграции между визуальным моделированием и средой разработки Visual Studio, включает обновленные возможности как для разработчиков Visual Basic, так и для поддержки разработки в среде Visual C++.

    Windows DNA, Visual Studio и Microsoft Visual Modeler (MSVM) обеспечивают правильную комбинацию инфраструктуры и инструментов проектирования для создания нового поколения п-уровне- вых, создаваемых на основе компонентов приложений.

    MSVM упрощает построение сложных, многоуровневых бизнес- приложений, основанных на Windows DNA, позволяя разработчикам наглядно в графическом виде представлять организацию их приложений.

    Новые возможности Microsoft Visual Modeler включают интеграцию с Microsoft Visual SourceSafe системой контроля версий; интеграцию с Microsoft Visual Manager (VCM) и улучшенную поддержку Microsoft Repository для разработок на основе Visual Basic. Расширения Visual Modeler для поддержки групповой разработки включают возможность опубликования моделей в репозитории через VCM; в дальнейшем возможен просмотр моделей и их совместное использование членами группы разработчиков. Компоненты могут быть импортированы из репозитория через VCM посредством техники drag-and-drop. Точно так же интерфейсные компоненты СОМ могут быть импортированы из Windows Explorer.

    Microsoft Visual Modeler - наиболее простой в освоении инструмент из семейства Rational Rose, мирового лидера среди инструментов визуального моделирования, использует общую кодовую основу и предлагает масштабируемый, интегрированный, полностью совместимый набор решений визуального моделирования для программистов, использующих Visual Basic и/или Visual C++. Visual Modeler поддерживает Унифицированный Язык Моделирования (UML), разработанный таким образом, что даже разработчики, не имеющие опыта в визуальном моделировании, легко его осваивают и успешно создают модели.

    Семейство продуктов AllFusion. Component Modeler - базовый компонент комплекта AllFusion Modeling Suite компании Computer Associates. Комплект также включает в себя: Process Modeler (ранее - BPwin), который объединяет моделирование бизнес-процессов, потоков данных и рабочей деятельности в одном простом в использовании инструменте; ERwin Data Modeler (ранее - ERwin), применяемый для моделирования баз данных, и Data Model Validator (ранее - ERwin Examiner) для улучшения согласованности и качества моделей данных. Component Modeler и ERwin Data Modeler работают совместно, что дает возможность разработчикам и аналитикам баз данных приводить информацию в реляционных базах данных к виду, пригодному для использования объектно-ориентированными приложениями. Модели бизнес-процессов Process Modeler могут быть синхронизированы с моделями данных ERwin Data Modeler для обеспечения оптимальной поддержки бизнес-процессов организации .

    Семейство AllFusion состоит из средств, предназначенных для управления процессами и проектами, моделирования и разработки, публикации знаний и визуализации. ПО семейства AllFusion улучшает способность автоматизировать процессы жизненного цикла критически важных приложений, что соответствует потребностям постоянно усложняющегося и изменчивого мира электронного бизнеса.

    Методология UML (англ. Unified Modeling Language - унифицированный язык моделирования) - язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это открытый стандарт, использующий графические обозначения для создания абстрактной моделисистемы, называемой UML-моделью. UML был создан для определения, визуализации, проектирования и документирования в основном программных систем. UML не является языком программирования, но в средствах выполнения UML-моделей как интерпретируемого кода возможна кодогенерация. Использование UML не ограничивается моделированием программного обеспечения. Его также используют для моделирования бизнес-процессов, системного проектированияи отображения организационных структур.

    Использование UML позволяет также разработчикам программного обеспечения достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (generalization), объединение (aggregation) и поведение), и больше сконцентрироваться на проектировании и архитектуре.

    Диаграммы В UML используются следующие виды диаграмм (для исключения неоднозначности приведены также обозначения на английском языке):

    Диаграмма классов (Class diagram) - статическая структурная диаграмма, описывающая структуру системы, она демонстрирует классы системы, их атрибуты, методы и зависимости между классами. Существуют разные точки зрения на построение диаграмм классов в зависимости от целей их применения: концептуальная точка зрения - диаграмма классов описывает модель предметной области, в ней присутствуют только классы прикладных объектов; точка зрения спецификации - диаграмма классов применяется при проектировании информационных систем; точка зрения реализации - диаграмма классов содержит классы, используемые непосредственно в программном коде (при использовании объектно-ориентированных языков программирования).

    Диаграмма компонентов (Component diagram) - статическая структурная диаграмма, показывает разбиение программной системы на структурные компоненты и связи (зависимости) между компонентами. В качестве физических компонент могут выступать файлы, библиотеки, модули, исполняемые файлы, пакеты и т. п.

    Диаграмма композитной/составной структуры (Composite structure diagram) - статическая структурная диаграмма, демонстрирует внутреннюю структуру классов и, по возможности, взаимодействие элементов (частей) внутренней структуры класса. Подвидом диаграмм композитной структуры являются диаграммы кооперации (Collaboration diagram, введены в UML 2.0), которые показывают роли и взаимодействие классов в рамках кооперации. Кооперации удобны при моделировании шаблонов проектирования. Диаграммы композитной структуры могут использоваться совместно с диаграммами классов.

    Диаграмма развёртывания (Deployment diagram) - служит для моделирования работающих узлов (аппаратных средств, англ. node) иартефактов, развёрнутых на них. В UML 2 на узлах разворачиваются артефакты (англ. artifact), в то время как в UML 1 на узлах разворачивались компоненты. Между артефактом и логическим элементом (компонентом), который он реализует, устанавливается зависимость манифестации.

    Диаграмма объектов (Object diagram) - демонстрирует полный или частичный снимок моделируемой системы в заданный момент времени. На диаграмме объектов отображаются экземпляры классов (объекты) системы с указанием текущих значений их атрибутов и связей между объектами.

    Диаграмма пакетов (Package diagram) - структурная диаграмма, основным содержанием которой являются пакеты и отношения между ними. Жёсткого разделения между разными структурными диаграммами не проводится, поэтому данное название предлагается исключительно для удобства и не имеет семантического значения (пакеты и диаграммы пакетов могут присутствовать на других структурных диаграммах). Диаграммы пакетов служат, в первую очередь, для организации элементов в группы по какому-либо признаку с целью упрощения структуры и организации работы с моделью системы.

    Диаграмма деятельности (Activity diagram) - диаграмма, на которой показано разложение некоторой деятельности на её составные части. Под деятельностью (англ. activity) понимается спецификация исполняемого поведения в виде координированного последовательного и параллельного выполнения подчинённых элементов - вложенных видов деятельности и отдельных действий (англ. action), соединённых между собой потоками, которые идут от выходов одного узла к входам другого. Диаграммы деятельности используются при моделировании бизнес-процессов, технологических процессов, последовательных и параллельных вычислений. Аналогом диаграмм деятельности являются схемы алгоритмов по ГОСТ 19.701-90.

    Диаграмма автомата (State Machine diagram, диаграмма конечного автомата, диаграмма состояний) - диаграмма, на которой представлен конечный автомат с простыми состояниями, переходами и композитными состояниями. Конечный автомат (англ. State machine) - спецификация последовательности состояний, через которые проходит объект или взаимодействие в ответ на события своей жизни, а также ответные действия объекта на эти события. Конечный автомат прикреплён к исходному элементу (классу, кооперации или методу) и служит для определения поведения его экземпляров.

    Диаграмма вариантов использования (Use case diagram) - диаграмма, на которой отражены отношения, существующие между акторами и вариантами использования. Основная задача - представлять собой единое средство, дающее возможность заказчику, конечному пользователю и разработчику совместно обсуждать функциональность и поведение системы.

    Диаграммы коммуникации и последовательности транзитивны, выражают взаимодействие, но показывают его различными способами и с достаточной степенью точности могут быть преобразованы одна в другую. Диаграмма коммуникации (Communication diagram, в UML 1.x - диаграмма кооперации, collaboration diagram) - диаграмма, на которой изображаются взаимодействия между частями композитной структуры или ролями кооперации. В отличие от диаграммы последовательности, на диаграмме коммуникации явно указываются отношения между элементами (объектами), а время как отдельное измерение не используется (применяются порядковые номера вызовов). Диаграмма последовательности (Sequence diagram) - диаграмма, на которой изображено упорядоченное во времени взаимодействие объектов. В частности, на ней изображаются участвующие во взаимодействии объекты и последовательность сообщений, которыми они обмениваются. Диаграмма сотрудничества - Этот тип диаграмм позволяет описать взаимодействия объектов, абстрагируясь от последовательности передачи сообщений. На этом типе диаграмм в компактном виде отражаются все принимаемые и передаваемые сообщения конкретного объекта и типы этих сообщений. По причине того, что диаграммы Sequence и Collaboration являются разными взглядами на одни и те же процессы, Rational Rose позволяет создавать из Sequence диаграммы диаграмму Collaboration и наоборот, а также производит автоматическую синхронизацию этих диаграмм.

    Диаграмма обзора взаимодействия (Interaction overview diagram) - разновидность диаграммы деятельности, включающая фрагменты диаграммы последовательности и конструкции потока управления. Этот тип диаграмм включает в себя диаграммы Sequence diagram (диаграммы последовательностей действий) и Collaboration diagram (диаграммы сотрудничества). Эти диаграммы позволяют с разных точек зрения рассмотреть взаимодействие объектов в создаваемой системе.

    Диаграмма синхронизации (Timing diagram) - альтернативное представление диаграммы последовательности, явным образом показывающее изменения состояния на линии жизни с заданной шкалой времени. Может быть полезна в приложениях реального времени.

    Помимо прочего, язык UML применяется для проектирования реляционных БД. Для этого используется небольшая часть языка (диаграммы классов), да и то не в полном объеме. С точки зрения проектирования реляционных БД модельные возможности не слишком отличаются от возможностей ER-диаграмм

    Диаграммой классов в терминологии UML называется диаграмма, на которой показан набор классов (и некоторых других сущностей), не имеющих явного отношения к проектированию БД), а также связей между этими классами. Ограничения могут неформально задаваться на естественном языке или формулироваться на языке объектных ограничений OCL (Object Constraints Language).

    Классом называется именованное описание совокупности объектов с общими атрибутами, операциями, связями и семантикой. Графически класс изображается в виде прямоугольника. Имя (текстовая строка), служит для идентификации класса.

    Атрибутом класса называется именованное свойство класса, описывающее множество значений, которые могут принимать экземпляры этого свойства. Класс может иметь любое число атрибутов (в частности, не иметь ни одного атрибута).

    Операцией класса называется именованная услуга, которую можно запросить у любого объекта этого класса. Операция - это абстракция того, что можно делать с объектом. Класс может содержать любое число операций (в частности, не содержать ни одной операции). Набор операций класса является общим для всех объектов данного класса.

    В диаграмме классов могут участвовать связи трех разных категорий: зависимость (dependency), обобщение (generalization) и ассоциация (association).

    Зависимостью называют связь по применению, когда изменение в спецификации одного класса может повлиять на поведение другого класса, использующего первый класс. Если интерфейс второго класса изменяется, это влияет на поведение объектов первого класса. Зависимость показывается прерывистой линией со стрелкой, направленной к классу, от которого имеется зависимость.

    Связью-обобщением называется связь между общей сущностью, называемой суперклассом, или родителем, и более специализированной разновидностью этой сущности, называемой подклассом, или потомком. Обобщения иногда называют связями "is a", имея в виду, что класс-потомок является частным случаем класса-предка. Класс-потомок наследует все атрибуты и операции класса-предка, но в нем могут быть определены дополнительные атрибуты и операции.


    Похожая информация.