Войти
Android, Windows, Apple, Ликбез. Социальные сети. Драйверы
  • Японские телефоны Новый японский смартфон
  • Lenovo G500S: характеристики, основные особенности
  • Определяем серию продукта видеокарт Nvidia Характеристики карты nvidia 9800 gt
  • А конкуренты у смартфона есть
  • Что такое расширение файла TRZ?
  • Не работает динамик в "айфоне"
  • Что такое gigabit ethernet. Gigabit Ethernet сетевой адаптер PCI Express

    Что такое gigabit ethernet. Gigabit Ethernet сетевой адаптер PCI Express

    Введение

    Сети на основе 10/100 Мбит/с Ethernet будет более чем достаточно для выполнения любых задач в небольших сетях. Но как насчет будущего? Вы подумали о потоках видео, которые будут проходить по сети вашего дома? Справится ли с ними 10/100 Ethernet?

    В нашей первой статье, посвященной гигабитному Ethernet, мы вплотную с ним познакомимся и определим, нужен ли он вам. Мы также постараемся узнать, что вам потребуется для создания «готовой к гигабиту» сети и проведем краткий экскурс в гигабитное оборудование для небольших сетей.

    Что такое гигабитный Ethernet?

    Гигабитный Ethernet также известен как «гигабит по меди» или 1000BaseT . Он представляет собой обычную версию Ethernet, работающую на скоростях до 1.000 мегабит в секунду, то есть в десять раз быстрее 100BaseT.

    Основой гигабитного Ethernet является стандарт IEEE 802.3z , который был утвержден в 1998 году. Однако в июне 1999 года к нему вышло дополнение — стандарт гигабитного Ethernet по медной витой паре 1000BaseT . Именно этот стандарт смог вывести гигабитный Ethernet из серверных комнат и магистральных каналов, обеспечив его применение в тех же условиях, что и 10/100 Ethernet.

    До появления 1000BaseT для гигабитного Ethernet необходимо было использовать волоконно-оптический или экранированный медный кабели, которые вряд ли можно назвать удобными для прокладки обычных локальных сетей. Данные кабели (1000BaseSX, 1000BaseLX и 1000BaseCX) и сегодня используются в специальных областях применения, поэтому мы не будем их рассматривать.

    Группа гигабитного Ethernet 802.3z прекрасно справилась со своей работой — она выпустила универсальный стандарт, в десять раз превышающий скорость 100BaseT. 1000BaseT также является обратно совместимым с 10/100 оборудованием, он использует CAT-5 кабель (или более высокую категорию). Кстати, сегодня типичная сеть построена именно на базе кабеля пятой категории.

    Нужен ли он нам?

    В первой литературе о гигабитном Ethernet в качестве области применения нового стандарта указывался корпоративный рынок, и чаще всего — связь хранилищ данных. Поскольку гигабитный Ethernet обеспечивать в десять раз больший канал, чем привычный 100BaseT, естественным применением стандарта является соединение участков, требующих высокую пропускную способность. Это связь между серверами, коммутаторами и магистральными узлами. Именно там гигабитный Ethernet необходим, нужен и полезен.

    По мере снижения цен на гигабитное оборудование область применения 1000BaseT расширилась до компьютеров «опытных пользователей» и рабочих групп, использующих «требовательные к пропускной способности приложения».

    Поскольку потребности в передаче данных у большинства небольших сетей более чем скромные, вряд ли им когда-нибудь понадобится пропускная способность сети 1000BaseT. Давайте рассмотрим некоторые типичные области применения небольших сетей и оценим их потребность в гигабитном Ethernet.

    Нужен ли он нам, продолжение

    • Передача больших файлов по сети

      Подобное применение характерно, скорее, для малых офисов, особенно в компаниях, занимающихся графическим дизайном, архитектурой или другим бизнесом, связанным с обработкой файлов размером в десятки-сотни мегабайт. Вы легко подсчитаете, что 100-мегабайтный файл будет передан по 100BaseT сети всего за восемь секунд [(100Мбайт x 8бит/байт)/ 100 Мбит/с]. В действительности же многие факторы ухудшают скорость передачи, так что ваш файл будет передаваться несколько дольше. Некоторые из этих факторов связаны с операционной системой, запущенными приложениями, количеством памяти на ваших компьютерах, скоростью процессора и возрастом. (Возраст системы влияет на скорость шин на материнской плате).

      Еще одним важным фактором является скорость сетевого оборудования, и переход на гигабитное оборудование позволяет устранить потенциальное узкое место и ускорить передачу больших объемов файлов. Многие подтвердят, что получение скоростей выше 50 Мбит/с на 100BaseT сети — дело отнюдь не тривиальное. Гигабитный же Ethernet сможет обеспечить пропускную способность выше 100 Мбит/с.

    • Сетевые устройства резервирования

      Можно рассматривать этот случай как вариант «больших файлов». Если ваша сеть настроена на резервирование всех компьютеров на один файловый сервер, то гигабитный Ethernet позволит вам ускорить этот процесс. Однако здесь существует и подводный камень — увеличение «трубы» пропускания к серверу может не привести к положительному эффекту, если сервер не будет успевать обрабатывать входящий поток данных (также это касается и носителя резервной информации).

      Для получения выгоды от высокоскоростной сети вам следует оснастить сервер большим объемом памяти и проводить резервирование на быстрый жесткий диск, а не ленту или CDROM. Как видим, к переходу на гигабитный Ethernet следует основательно подготовиться.

    • Приложения клиент-сервер

      Эта область применения опять же более характерна для сетей малого бизнеса, чем для домашних сетей. Между клиентом и сервером в подобных приложениях может передаваться большой объем данных. Подход прежний: вам необходимо проанализировать объем передающихся сетевых данных, чтобы узнать, сможет ли приложение «успеть» за увеличением пропускной способности сети и достаточно ли этих данных для нагрузки гигабитного Ethernet.

    По правде говоря, мы считаем, что вряд ли большинство «строителей» домашних сетей найдут достаточно оснований для покупки гигабитного оборудования. В сетях малого бизнеса переход на гигабит может помочь, но мы рекомендуем сначала провести анализ количества передаваемых данных. С современным состоянием все понятно. Но что делать, если вы желаете учесть возможность будущей модернизации. Что вам нужно сделать сегодня, чтобы быть к ней готовым? В следующей части нашей статьи мы рассмотрим изменения, которые необходимо осуществить с самой дорогой, чаще всего и самой трудоемкой, части сети — кабелем .

    Кабель для гигабитного Ethernet

    Как мы уже упоминали во введении, одним из ключевых требований стандарта 1000BaseT является использования кабеля категории 5 (CAT 5) или выше. То есть гигабитный Ethernet может работать на существующей кабельной структуре 5 категории . Согласитесь, подобная возможность очень удобна. Как правило, все современные сети используют кабель пятой категории, если только ваша сеть не была установлена в 1996 году или раньше (стандарт был утвержден в 1995 году). Однако здесь существует несколько подводных камней.

    • Требуется четыре пары

      Как видно из этой статьи , 1000BaseT использует все четыре пары кабеля категории 5 (или выше) для создания четырех 250 Мбит/с каналов. (Также применяется и другая схема кодирования — пятиуровневая амплитудно-импульсная модуляция — чтобы оставаться в пределах частотного диапазона 100 МГц CAT5). В результате мы можем использовать для гигабитного Ethernet существующую кабельную структуру CAT 5.

      Поскольку 10/100BaseT использует только две пары CAT 5 из четырех, некоторые люди не подключали лишние пары при прокладке своих сетей. Пары использовались, к примеру, для телефона или для питания по Ethernet (POE). К счастью гигабитные сетевые карты и коммутаторы обладают достаточным интеллектом, чтобы откатиться на стандарт 100BaseT если все четыре пары будут недоступны. Поэтому ваша сеть в любом случае будет работать с гигабитными коммутаторами и сетевыми картами, но высокой скорости за уплаченные деньги вы не получите.

    • Не используйте дешевые разъемы

      Еще одна проблема самодеятельных сетевиков — плохая обжимка и дешевые настенные розетки. Они приводят к несоответствиям импеданса, в результате чего возникают обратные потери, а вследствие них и уменьшение пропускной способности. Конечно, вы можете попробовать поискать причину «в лоб», но все же вам лучше обзавестись сетевым тестером, который сможет обнаружить обратные потери и перекрестные помехи. Или просто смириться с низкой скоростью.

    • Ограничения по длине и топологии

      1000BaseT ограничен той же максимальной длиной сегмента, что и 10/100BaseT. Таким образом, максимальный диаметр сети составляет 200 метров (от одного компьютера до другого через один коммутатор). Что касается топологии 1000BaseT, то здесь работают те же правила, что и для 100BaseT, за исключением допустимости лишь одного повторителя на сегмент сети (или, если быть более точным, на один «полудуплексный домен коллизий»). Но поскольку гигабитный Ethernet не поддерживает полудуплексную передачу, вы можете забыть о последнем требовании. В общем если ваша сеть прекрасно себя чувствовала под 100BaseT, у вас не должно возникнуть проблем при переходе к гигабиту.

    Кабель для гигабитного Ethernet, продолжение

    Для прокладки новых сетей лучше всего использовать кабель CAT 5e . И хотя CAT 5 и CAT 5e оба пропускают частоту 100 МГц , кабель CAT5e производится с учетом дополнительных параметров, важных для лучшей передачи высокочастотных сигналов.

    Просмотрите следующие документы Belden, чтобы подробнее узнать о спецификациях CAT 5e кабеля (на английском):

    И хотя современный CAT 5 кабель будет прекрасно работать с 1000BaseT, вам лучше все же выбрать CAT 5e, если вы хотите гарантировать высокую пропускную способность. Если же вы колеблетесь, прикиньте стоимость кабеля CAT 5 и CAT 5e и действуйте по своим средствам.

    Единственное, чего вам следует избегать — рекомендаций по покупке CAT 6 кабеля для гигабитного Ethernet. CAT 6 был добавлен в стандарт TIA-568 в июне 2002 года и он пропускает частоты до 200 МГц . Продавцы наверняка будут уговаривать вас купить именно более дорогую шестую категорию, но она вам понадобится, только если вы планируете построить сеть 10 Гбит/с Ethernet по медной проводке, что на данный момент вряд ли реально. А что насчет кабеля CAT 7? Забудьте про него!

    Если же вы располагаете хорошей суммой, то лучше ее потратить на специалиста-сетевика , который обладает достаточным опытом прокладки гигабитных сетей . Специалист сможет грамотно проложить кабели или проверить вашу существующую сеть на работу с гигабитным Ethernet. При установке кабеля CAT 6 мы крайне рекомендуем обратиться за помощью к профессионалам, поскольку этот кабель оговаривает радиус сгиба и специальные качественные разъемы.

    Гигабитное оборудование

    В некотором роде вопрос «гигабит или нет» мог быть предметом спора год или пару лет назад. Если смотреть с точки зрения покупателя SOHO, переход от 10 к 10/100 Мбит/с уже случился. Новые компьютеры оснащаются 10/100 Ethernet портами, маршрутизаторы уже используют встроенные 10/100 коммутаторы, а не 10BaseT концентраторы. Однако подобная перемена не является следствием требований и пожеланий домашних «сетевиков». Они довольствуются существующим оборудованием.

    За эти изменения нам следует благодарить корпоративных пользователей, которые покупают сегодня в массовых количествах только 10/100 оборудование, что позволяет опустить на него цены. Как только производители потребительского оборудования обнаружили, что использовать 10BaseT чипы по сравнению с 10/100 вариантам дороже , они долго не раздумывали.

    Таким образом, вчерашняя архитектура на базе 10BaseT концентраторов незаметно перешла в современные 10/100 коммутируемые сети. Точно такой же переход мы испытаем и с 10/100 на 10/100/1000 Мбит/с. И хотя до переломного момента осталось еще год или два, переход уже начался и цены неуклонно продолжают свое падение вниз.

    Все что вам нужно — купить гигабитную сетевую карту и гигабитный коммутатор. Давайте рассмотрим их чуть подробнее.

    • Сетевые карты

      Фирменные 32-битные PCI 10/100/1000BaseT сетевые карты типа Intel PRO1000 MT, Netgear GA302T и SMC SMC9552TX стоят в Интернете от $40 до $70. Продукты производителей второго эшелона дешевле примерно на $5. И хотя гигабитные сетевые карты приблизительно в два с половиной раза дороже средних 10/100 карт, вряд ли ваш кошелек вообще заметит какую-либо разницу, если только вы не закупаете их оптовыми партиями.

      Вы можете найти сетевые карты, поддерживающие не только 32-битную шину PCI, но и 64-битную, однако и стоят они дороже. Чего вы не увидите, так это CardBus адаптеров для ваших ноутбуков. По каким то причинам производители считают, что ноутбукам гигабитные сети вообще не нужны.

    • Коммутаторы

      А вот цена 10/100/1000 коммутаторов заставляет десять раз подумать о целесообразности перехода на гигабитный Ethernet. Хорошая новость: сегодня уже появились прозрачные гигабитные коммутаторы, которые стоят гораздо дешевле своих управляемых собратьев для корпоративного рынка.

      Простой четырехпортовый 10/100/1000 коммутатор Netgear GS104 можно купить меньше чем за $225. Если вы остановите свой выбор на менее известных фирмах типа TRENDnet TEG-S40TXE, то уменьшите стоимость до $150. Мало четырех портов — пожалуйста. Восьмипортовая версия Netgear GS108 обойдется вам примерно в $450, а TRENDnet TEG-S80TXD — около $280.

      Учитывая, что пятипортовый 10/100 коммутатор сегодня стоит всего $20, цены на гигабит кому-то покажутся слишком высокими. Но вспомните: еще совсем недавно вы могли купить только управляемые гигабитные коммутаторы стоимостью $100+ за порт. Цены идут в правильном направлении!

    Придется ли менять компьютеры?

    Откроем небольшой секрет гигабитного Ethernet: под Win98 или 98SE вы, скорее всего, не получите никакого преимущества от гигабитной скорости. И хотя с помощью редактирования реестра можно попытаться улучшить пропускную способность, вы все равно не получите существенного прироста производительности по сравнению с текущим 10/100 оборудованием.

    Проблема кроется в TCP/IP стеке Win98, который не был разработан с учетом высокоскоростных сетей. У стека возникают проблемы даже с использованием 100BaseT сети, чего уж тогда говорить о гигабитной связи! Мы еще вернемся к этому вопросу во второй статье, но пока что вам следует рассматривать только Win2000 и WinXP для работы с гигабитным Ethernet.

    Последним предложением мы отнюдь не подразумеваем, что только Windows 2000 и XP поддерживают гигабитные сетевые карты. Мы просто не проверяли производительность под другими операционными системами, так что воздержитесь, пожалуйста, от язвительных замечаний!

    Если вы интересуетесь, придется ли вам выбрасывать старый добрый компьютер и покупать новый для использования гигабитного Ethernet, то наш ответ — «возможно». Судя по нашем практическому опыту, один герц «современных» процессоров равняется одному биту в секунду пропускной способности сети . Один из производителей гигабитного сетевого оборудования согласился с нами: любая машина с тактовой частотой 700 МГц или ниже не сможет в полной мере использовать пропускную способность гигабитного Ethernet. Так что даже с правильной операционной системой старым компьютерам гигабитный Ethernet — все равно, что мертвому припарки. Вы скорее увидите скорости 100-500 Мбит/с

    Не успело еще, как говорится, обсохнуть молоко на губах только что родившего­ся стандарта быстрого Ethernet, как комитет 802 приступил к работе над новой версией (1995). Ее почти сразу окрестили гигабитной сетью Ethernet, а в 1998 году новый стандарт был уже ратифицирован IEEE под официальным названием 802.3z. Тем самым разработчики подчеркнули, что это последняя разработка в линейке 802.3 (если только кто-нибудь в срочном порядке не придумает называть стандарты, скажем, 802.3ы. В свое время, Бернард Шоу предлагал расширить английский алфавит и включить в него, в частности, букву «ы», но был не убедителен.).

    Главные предпосылки создания 802.3z были те же самые, что и при создании 802.3u, - повысить в 10 раз скорость, сохранив обратную совместимость со старыми сетями Ethernet. В частности, гигабитный Ethernet должен был обеспечить дейтаграммный сервис без подтверждений как при односторонней, так и при групповой передаче. При этом необходимо было сохранить неизменными 48-битную схему адресации и формат кадра, включая нижние и верхние ограничения его размера. Новый стандарт удовлетворил всем этим требованиям.

    Гигабитные сети Ethernet строятся по принципу «точка - точка», в них не применяется моноканал, как в исходном 10-мегабитном Ethernet, который теперь, кстати, величают классическим Ethernet. Простейшая гигабитная сеть, показанная на схеме "а", состоит из двух компьютеров, напрямую соединенных друг с другом. В более общем случае, однако, имеется коммутатор или концентратор, к которому подсоединяется множество компьютеров, возможна также установка дополнительных коммутаторов или концентраторов (схема "б"). Но в любом случае к одному кабелю гигабитного Ethernet всегда присоединяются два устройства, ни больше, ни меньше.

    Гигабитный Ethernet может работать в двух режимах: полнодуплексном и полудуплексном. «Нормальным» считается полнодуплексный, при этом трафик может идти одновременно в обоих направлениях. Этот режим используется, когда имеется центральный коммутатор, соединенный с периферийными компьютерами или коммутаторами. В такой конфигурации сигналы всех линий буферизируются, поэтому абоненты могут отправлять данные, когда им вздумается. Отправитель не прослушивает канал, потому что ему не с кем конкурировать. На линии между компьютером и коммутатором компьютер - это единственный потенциальный отправитель; передача произойдет успешно даже в том случае, если одновременно с ней ведется передача со стороны коммутатора (линия полнодуплексная). Так как конкуренции в данном случае нет, протокол CSMA/CD не применяется, поэтому максимальная длина кабеля определяется исключительно мощностью сигнала, а вопросы времени распространения шумового всплеска здесь не встают. Коммутаторы могут работать на смешанных скоростях; более того, они автоматически выбирают оптимальную скорость. Самонастройка поддерживается так же, как и в быстром Ethernet .

    Полудуплексный режим работы используется тогда, когда компьютеры соединены не с коммутатором, а с концентратором. Хаб не буферизирует входящие кадры. Вместо этого он электрически соединяет все линии, симулируя моноканал обычного Ethernet. В этом режиме возможны коллизии, поэтому применяется CSMA/CD . Поскольку кадр минимального размера (то есть 64-байтный) может передаваться в 100 раз быстрее, чем в классической сети Ethernet, максимальная длина сегмента должна быть соответственно уменьшена в 100 раз. Она составляет 25 м - именно при таком расстоянии между станциями шумовой всплеск гарантированно достигнет отправителя до окончания его передачи. Если бы кабель имел длину 2500 м, то отправитель 64-байтного кадра при 1 Гбит/с успел бы много чего наделать даже за то время, пока его кадр прошел только десятую часть пути в одну сторону, не говоря уже о том, что сигнал должен еще и вернуться обратно.

    Комитет разработчиков стандарта 802.3z совершенно справедливо заметил, что 25 м - это неприемлемо малая длина, и ввел два новых свойства, позволивших расширить радиус сегментов. Первое называется расширением носителя. Заключается это расширение всего-навсего в том, что аппаратура вставляет собственное поле заполнения, растягивающее нормальный кадр до 512 байт. Поскольку это поле добавляется отправителем и изымается получателем, то программному обеспечению нет до него никакого дела. Конечно, тратить 512 байт на передачу 46 байт - это несколько расточительно с точки зрения эффективности использования пропускной способности. Эффективность такой передачи составляет всего 9 %.

    Второе свойство, позволяющее увеличить допустимую длину сегмента, - это пакетная передача кадров. Это означает, что отправитель может посылать не единичный кадр, а пакет, объединяющий в себе сразу много кадров. Если полная длина пакета оказывается менее 512 байт, то, как в предыдущем случае, производится аппаратное заполнение фиктивными данными. Если же кадров, ждущих передачу, хватает на то, чтобы заполнить такой большой пакет, то работа системы оказывается очень эффективной. Такая схема, разумеется, предпочтительнее расширения носителя. Эти методы позволили увеличить максимальную длину сегмента до 200 м, что, наверное, для организаций уже вполне приемлемо.

    Трудно представить себе организацию, которая потратила бы немало усилий и средств на установку плат для высокопроизводительной гигабитной сети Ethernet, а потом соединила бы компьютеры концентраторами, симулирующими работу классического Ethernet со всеми его коллизиями и прочими проблемами. Концентраторы, конечно, дешевле коммутаторов, но интерфейсные платы гигабитного Ethernet все равно относительно дороги, поэтому экономия на покупке концентратора вместо коммутатора себя не оправдывает. Кроме того, это резко снижает производительность, и становится вообще непонятно, зачем было тратить деньги на гигабитные платы. Однако обратная совместимость - это нечто священное в компьютерной индустрии, поэтому, несмотря ни на что, в 802.3z подобная возможность предусматривается.

    Гигабитный Ethernet поддерживает как медные, так и волоконно-оптические кабели. Работа на скорости 1 Гбит/с означает, что источник света должен включаться и выключаться примерно раз в наносекунду. Светодиоды просто не могут работать так быстро, поэтому здесь необходимо применять лазеры. Стандартом предусматриваются две операционных длины волны: 0,85 мкм (короткие волны) и 1,3 мкм (длинные). Лазеры, рассчитанные на 0,85 мкм, дешевле, но не работают с одномодовыми кабелями.

    Кабели гигабитного Ethernet

    Название

    Тип

    Длина сегмента

    Преимущества

    1000Base-SX

    Оптоволокно

    550м

    Многомодовое волокно (50, 62,5 мкм)

    1000Base-LX

    Оптоволокно

    5000м

    Одномодовое (10 мкм) или многомодовое (50, 62,5 мкм) волокно

    1000Base-CX

    2 экранированные витые пары

    25м

    Экранированная витая пара

    1000Base-T

    4 неэкранированные витые пары

    100м

    Стандартная витая пара 5-й категории

    Официально допускается использование трех диаметров волокна: 10, 50 и 62,5 мкм. Первое предназначено для одномодовой передачи, два других - для многомодовой. Не все из шести комбинаций являются разрешенными, а максимальная длина сегмента зависит как раз от выбранной комбинации. Числа, приведенные в таблице, - это наилучший случай. В частности, пятикилометровый кабель можно использовать только с лазером, рассчитанным на длину волны 1,3 мкм и работающим с 10-микрометровым одномодовым волокном. Такой вариант, видимо, является наилучшим для магистралей разного рода кампусов и производственных территорий. Ожидается, что он будет наиболее популярным несмотря на то, что он самый дорогой.

    1000Base-CX использует короткий экранированный медный кабель. Проблема в том, что его поджимают конкуренты как сверху (1000Base-LX), так и снизу (1000Base-T). В результате сомнительно, что он завоюет широкое общественное признание.

    Наконец, еще один вариант кабеля - это пучок из четырех неэкранированных витых пар. Поскольку такая проводка существует почти повсеместно, то, похоже, это и будет самый популярный гигабитный Ethernet.

    Новый стандарт использует новые правила кодирования сигналов, передающихся по оптоволокну. Манчестерский код при скорости передачи данных 1 Гбит/с потребовал бы скорости изменения сигнала в 2 Гбод. Это слишком сложно и занимает слишком большую долю пропускной способности. Вместо манчестерского кодирования применяется схема, называющаяся 8В/10В. Как нетрудно догадаться по названию, каждый байт, состоящий из 8 бит, кодируется для передачи по волокну десятью битами. Поскольку возможны 1024 результирующих кодовых слова для каждого входящего байта, данный метод дает некоторую свободу выбора кодовых слов. При этом принимаются в расчет следующие правила:

    Ни одно кодовое слово не должно иметь более четырех одинаковых битов подряд;

    Ни в одном кодовом слове не должно быть более шести нулей или шести единиц.

    Почему именно такие правила?

    Во-первых, они обеспечивают достаточное количество изменений состояния в потоке данных, необходимое для того, чтобы приемник оставался синхронизированным с передатчиком.

    Во-вторых, количество нулей и единиц стараются примерно выровнять. К тому же многие входящие байты имеют два возможных кодовых слова, ассоциированных с ними. Когда кодирующее устройство имеет возможность выбора кодовых слов, оно, вероятно, выберет из них то, которое сравняет число нулей и единиц.

    Ссбалансированному количеству нулей и единиц потому придается такое значение, что необходимо держать постоянную составляющую сигнала на как можно более низком уровне. Тогда она сможет пройти через преобразователи без изменений. Люди, занимающиеся computer science, не в восторге от того, что преобразовательные устройства диктуют те или иные правила кодирования сигналов, но жизнь есть жизнь.

    Гигабитный Ethernet, построенный на 1000Base-T, использует иную схему кодирования, поскольку изменять состояние сигнала в течение 1 нс для медного кабеля затруднительно. Здесь применяются 4 витые пары категории 5, что дает возможность параллельно передавать 4 символа. Каждый символ кодируется одним из пяти уровней напряжения. Таким образом, один сигнал может означать 00, 01,10 или 11. Есть еще специальное, служебное значение напряжения. На одну витую пару приходится 2 бита данных, соответственно, за один временной интервал система передает 8 бит по 4 витым парам. Тактовая частота равна 125 МГц, что позволяет работать со скоростью 1 Гбит/с. Пятый уровень напряжения был добавлен для специальных целей - кадрирования и управления.

    1 Гбит/с - это довольно много. Например, если приемник отвлечется на какое-то дело в течение 1 мс и при этом забудет или не успеет освободить буфер, это означает, что он «проспит» примерно 1953 кадра. Может быть и другая ситуация: один компьютер выдает данные по гигабитной сети, а другой принимает их по классическому Ethernet. Вероятно, первый быстро завалит данными второго. В первую очередь переполнится буфер обмена. Исходя из этого было принято решение о внедрении в систему контроля потока (так было и в быстром Ethernet , хотя эти системы довольно сильно различаются).

    Для реализации контроля потока одна из сторон посылает служебный кадр, сообщающий о том, что второй стороне необходимо приостановиться на некоторое время. Служебные кадры - это, на самом деле, обычные кадры Ethernet, в поле Туре которых записано 0x8808. Первые два байта поля данных - командные, а последующие, по необходимости, содержат параметры команды. Для контроля потока используются кадры типа PAUSE, причем в качестве параметра указывается продолжительность паузы в единицах времени передачи минимального кадра. Для гигабитного Ethernet такая единица равна 512 нс, а паузы могут длиться до 33,6 мс.

    Гигабитный Ethernet был стандартизован, и комитет 802 заскучал. Тогда IEEE предложил ему начать работу над 10-гигабитным Ethernet. Начались долгие попытки найти в английском алфавите какую-нибудь букву после z. Когда стало очевидно, что такой буквы нет в природе, от старого подхода решено было отказаться и перейти к двухбуквенным индексам. Так в 2002 году появился стандарт 802.3ае. Судя по всему, появление 100-гигабитного Ethernet уже тоже не за горами.


    Gigabit Ethernet

    Сейчас идет много разговоров о том, что пора бы уж массово переходить на гигабитные скорости при подключении конечных пользователей локальных сетей, а также опять поднимается вопрос об оправданности и прогрессивности решений «волокно до рабочего места», «волокно до дома» и т.п. В связи с этим данная статья, описывающая стандарты не только на медные, но и, главным образом, на оптоволоконные интерфейсы GigE, будет вполне уместна и своевременна.

    архитектура стандарта Gigabit Ethernet

    На рис.1 показана структура уровней Gigabit Ethernet. Как и в стандарте Fast Ethernet, в Gigabit Ethernet не существует универсальной схемы кодирования сигнала, которая была бы идеальной для всех физических интерфейсов - так, с одной стороны, для стандартов 1000Base-LX/SX/CX используется кодирование 8B/10B, а с другой стороны, для стандарта 1000Base-T используется специальный расширенный линейный код TX/T2. Функцию кодирования выполняет подуровень кодирования PCS, размещенный ниже среданезависимого интерфейса GMII.

    Рис. 1. Структура уровней стандарта Gigabit Ethernet, GII интерфейс и трансивер Gigabit Ethernet

    GMII интерфейс . Среданезависимый интерфейс GMII (Gigabit Media Independent Interface) обеспечивает взаимодействие между уровнем MAC и физическим уровнем. GMII интерфейс является расширением интерфейса MII и может поддерживать скорости 10, 100 и 1000 Мбит/с. Он имеет отдельные 8 битные приемник и передатчик, и может поддерживать как полудуплексный, так и дуплексный режимы. Кроме этого, GMII интерфейс несет один сигнал, обеспечивающий синхронизацию (clock signal), и два сигнала состояния линии - первый (в состоянии ON) указывает наличие несущей, а второй (в состоянии ON) говорит об отсутствии коллизий - и еще несколько других сигнальных каналов и питание. Трансиверный модуль, охватывающий физический уровень и обеспечивающий один из физических средазависимых интерфейсов, может подключать например к коммутатору Gigabit Ethernet посредством GMII-интерфейса.

    Подуровень физического кодирования PCS. При подключении интерфейсов группы 1000Base-X, подуровень PCS использует блочное избыточное кодирование 8B10B, заимствованное из стандарта ANSI X3T11 Fibre Channel. Аналогичного рассмотренному стандарту FDDI, только на основе более сложной кодовой таблицы каждые 8 входных битов, предназначенных для передачи на удаленный узел, преобразовываются в 10 битные символы (code groups). Кроме этого в выходном последовательном потоке присутствуют специальные контрольные 10 битные символы. Примером контрольных символов могут служить символы, используемые для расширения носителя (дополняют кадр Gigabit Ethernet до его минимально размера 512 байт). При подключении интерфейса 1000Base- T, подуровень PCS осуществляет специальное помехоустойчивое кодирование, для обеспечения передачи по витой паре UTP Cat.5 на расстояние до 100 метров - линейный код TX/T2, разработанный компанией Level One Communications.

    Два сигнала состояния линии - сигнал наличие несущей и сигнал отсутствие коллизий - генерируются этим подуровнем.

    Подуровни PMA и PMD. Физический уровень Gigabit Ethernet использует несколько интерфейсов, включая традиционную витую пару категории 5, а также многомодовое и одномодовое волокно. Подуровень PMA преобразует параллельный поток символов от PCS в последовательный поток, а также выполняет обратное преобразование (распараллеливание) входящего последовательного потока от PMD. Подуровень PMD определяет оптические/электрические характеристики физических сигналов для разных сред. Всего определяются 4 различный типа физических интерфейса среды, которые отражены в спецификация стандарта 802.3z (1000Base-X) и 802.3ab (1000Base-T), (рис.2).

    Рис. 2. Физические интерфейсы стандарта Gigabit Ethernet

    интерфейс 1000Base-X

    Интерфейс 1000Base-X основывается на стандарте физического уровня Fibre Channel. Fibre Channel - это технология взаимодействия рабочих станций, суперкомпьютеров, устройств хранения и периферийных узлов. Fibre Channel имеет 4-х уровневую архитектуру. Два нижних уровня FC-0 (интерфейсы и среда) и FC-1 (кодирование/декодирование) перенесены в Gigabit Ethernet. Поскольку Fibre Channel является одобренной технологией, то такое перенесение сильно сократило время на разработку оригинального стандарта Gigabit Ethernet.

    Блочный код 8B/10B аналогичен коду 4B/5B, принятому в стандарте FDDI. Однако код 4B/5B был отвергнут в Fibre Channel, потому что этот код не обеспечивает баланса по постоянному току. Отсутствие баланса потенциально может привести к зависящему от передаваемых данных нагреванию лазерных диодов, поскольку передатчик может передавать больше битов "1" (излучение есть), чем "0" (излучения нет), что может быть причиной дополнительных ошибок при высоких скоростях передачи.

    1000Base-X подразделяется на три физических интерфейса, основные характеристики которых приведены ниже:

    Интерфейс 1000Base-SX определяет лазеры с допустимой длиной излучения в пределах диапазона 770-860 нм, мощность излучения передатчика в пределах от -10 до 0 дБм, при отношении ON/OFF (сигнал / нет сигнала) не меньше 9 дБ. Чувствительность приемника -17 дБм, насыщение приемника 0 дБм;

    Интерфейс 1000Base-LX определяет лазеры с допустимой длиной излучения в пределах диапазона 1270-1355 нм, мощность излучения передатчика в пределах от -13,5 до -3 дБм, при отношении ON/OFF (есть сигнал / нет сигнала) не меньше 9 дБ. Чувствительность приемника -19 дБм, насыщение приемника -3 дБм;

    1000Base-CX экранированная витая пара (STP "twinax") на короткие расстояния.

    Для справки в табл.1 приведены основные характеристики оптических приемо-передающих модулей, выпускаемых фирмой Hewlett Packard для стандартных интерфейсов 1000Base-SX (модель HFBR-5305, =850 нм) и 1000Base-LX (модель HFCT-5305, =1300 нм).

    Таблица 1. Технические характеристики оптических приемо-передатчиков Gigabit Ethernet

    Поддерживаемые расстояния для стандартов 1000Base-X приведены в табл.2.

    Таблица 2. Технические характеристики оптических приемо-передатчиков Gigabit Ethernet

    При кодировании 8B/10B битовая скорость в оптической линии составляет 1250 бит/c. Это означает, что полоса пропускания участка кабеля допустимой длины должна превышать 625 МГц. Из табл. 2 видно, что этот критерий для строчек 2-6 выполняется. Из-за большой скорости передачи Gigabit Ethernet, следует быть внимательным при построении протяженных сегментов. Безусловно предпочтение отдается одномодовому волокну. При этом характеристики оптических приемопередатчиков могут быть значительно выше. Например компания NBase выпускает коммутаторы с портами Gigabit Ethernet, обеспечивающими расстояния до 40 км по одномодовому волокну без ретрансляций (используются узкоспектральные DFB лазеры, работающие на длине волны 1550 нм).

    особенности использования многомодового волокна

    В мире существует огромное количество корпоративных сетей на основе многомодового волоконно-оптического кабеля, с волокнами 62,5/125 и 50/125. По этому естественно, что еще на этапе формирования стандарта Gigabit Ethernet возникла задача адаптации этой технологии для использования в существующих многомодовых кабельных системах. В ходе исследований по разработке спецификаций 1000Base-SX и 1000Base-LX была выявлена одна очень интересная аномалия, связанная с использованием лазерных передатчиков совместно с многомодовым волокном.

    Многомодовое волокно конструировалось для совместного использования со светоизлучающими диодами (спектр излучения 30-50 нс). Некогерентное излучение от таких светодиодов попадает в волокно по всей площади светонесущей сердцевины. В результате в волокне возбуждается огромное число модовых групп. Распространяющийся сигнал хорошо поддается описанию на языке межмодовой дисперсии. Эффективность использования таких светодиодов в качестве передатчиков в стандарте Gigabit Ethernet низкая, в силу очень высокой частоты модуляции - скорость битового потока в оптической линии равна 1250 Мбод, а длительность одно импульса - 0,8 нс. Максимальная скорость, когда еще используются светодиоды для передачи сигнала по многомодовому волокну, составляет 622,08 Мбит/c (STM-4, c учетом избыточности кода 8B/10B битовая скорость в оптической линии 777,6 Мбод). По этому Gigabit Ethernet стал первым стандартом, регламентирующим использование лазерных оптических передатчиков совместно с многомодовым волокном. Площадь ввода излучения в волокно от лазера значительно меньше, чем размер сердцевины многомодового волокна. Этот факт сам по себе еще не приводит к проблеме. В то же время, в технологическом процессе производства стандартных коммерческих многомодовых волокон допускается наличие некоторых некритичных при традиционном использовании волокна дефектов (отклонений в пределах допустимого), в наибольшей степени сосредоточенных вблизи оси сердцевины волокна. Хотя такое многомодовое волокно полностью удовлетворяет требованиям стандарта, когерентный свет от лазера, введенный по центру такого волокна, проходя через области неоднородности показателя преломления, способен расщепиться на небольшое число мод, которые затем распространяются по волокну разными оптическими путями и с разной скоростью. Это явление известно как дифференциальная модовая задержка DMD. В результате появляется фазовый сдвиг между модами, приводящий к нежелательной интерференции на приемной стороне и к значительному росту числа ошибок (рис.3а). Замети, что эффект проявляется только при одновременном стечении ряда обстоятельств: менее удачное волокно, менее удачный лазерный передатчик (разумеется удовлетворяющие стандарту) и менее удачный ввод излучения в волокно. С физической стороны, эффект DMD связан с тем, что энергия от когерентного источника распределяется внутри небольшого числа мод, в то время как некогерентный источник равномерно возбуждает огромное число мод. Исследования показывают, что эффект проявляется сильней при использовании длинноволновых лазеров (окно прозрачности 1300 нм).

    Рис.3. Распространение когерентного излучения в многомодовом волокне: а) Проявление эффекта дифференциальной модовой задержки (DMD) при осевом вводе излучения; б) Неосевой ввод когерентного излучения в многомодовое волокно.

    Указанная аномалия в худшем случае может вести к уменьшению максимальной длины сегмента на основе многомодового ВОК. Поскольку стандарт должен обеспечивать 100-процентную гарантию работы, максимальна длина должна сегмента регламентироваться с учетом возможного проявления эффекта DMD.

    Интерфейс 1000Base-LX . Для того, чтобы сохранить большее расстояние и избежать непредсказуемости поведения канала Gigabit Ethernet из-за аномалии, предложено вводить излучение в нецентральную часть сердцевины многомодового волокна. Излучение из-за апертурного расхождения успевает равномерно распределиться по всей сердцевине волокна, сильно ослабляя проявление эффекта, хотя максимальная длина сегмента и после этого остается ограниченной, (табл.2). Специально разработаны переходные одномодовые оптические шнуры MCP (mode conditioning patch-cords), у которых один из соединителей (а именно тот, который планируется сопрягать с многомодовым волокном) имеет небольшое смещение от оси сердцевины волокна. Оптический шнур, у которого один соединитель - Duplex SC со смещенной сердцевиной, а другой - обычный Duplex SC, может называться так: MCP Duplex SC - Duplex SC. Разумеется такой шнур не подходит для использования в традиционных сетях, например в Fast Ethernet, из-за больших вносимых потерь на стыке с MCP Duplex SC. Переходной MCP может быть комбинированным на основе одномодового и многомодового волокна и содержать элемент смещения между волокнами внутри себя. Тогда одномодовым концом он подключается к лазерному передатчику. Что же касается приемника, то к нему может подключаться стандартный многомодовый соединительный шнур. Использование переходных MCP шнуров позволяет заводить излучение в многомодовое волокно через область, смещенную на 10-15 мкм от оси (рис.3б). Таким образом, сохраняется возможность использования интерфейсных портов 1000Base-LX и с одномодовыми ВОК, поскольку там ввод излучения будет осуществляться строго по центру сердцевины волокна.

    Интерфейс 1000Base-SX . Так как интерфейс 1000Base-SX стандартизован только для использования с многомодовым волокном, то смещение области ввода излучения от центральной оси волокна можно реализовать внутри самого устройства, тем самым снять необходимость использования согласующего оптического шнура.

    интерфейс 1000Base-T

    1000Base-T - это стандартный интерфейс Gigabit Ethernet передачи по неэкранированной витой паре категории 5 и выше на расстояния до 100 метров. Для передачи используются все четыре пары медного кабеля, скорость передачи по одной паре 250 Мбит/c. Предполагается, что стандарт будет обеспечивать дуплексную передачу, причем данные по каждой паре будут передаваться одновременно сразу в двух направлениях - двойной дуплекс (dual duplex). 1000Base-T. Технически реализовать дуплексную передачу 1 Гбит/с по витой паре UTP cat.5 оказалось довольно сложно, значительно сложней чем в стандарте 100Base-TX. Влияние ближних и дальних переходных помех от трех соседних витых пар на данную пару в четырехпарном кабеле требует разработки специальной скремблированной помехоустойчивой передачи, и интеллектуального узла распознавания и восстановления сигнала на приеме. Несколько методов кодирования первоначально рассматривались в качестве кандидатов на утверждение в стандарте 1000Base-T, среди которых: 5- уровневое импульсно-амплитудное кодирование PAM-5; квадратурная амплитудная модуляция QAM-25, и др. Ниже приведены кратко идеи PAM-5, окончально утвержденного в качестве стандарта.

    Почему 5-уровневое кодирование. Распространенное четырехуровневое кодирование обрабатывает входящие биты парами. Всего существует 4 различных комбинации - 00, 01, 10, 11. Передатчик может каждой паре бит установить свой уровень напряжения передаваемого сигнал, что уменьшает в 2 раза частоту модуляции четырехуровневого сигнала, 125 МГц вместо 250 МГц, (рис.4), и следовательно частоту излучения. Пятый уровень добавлен для создания избыточности кода. В результате чего становится возможной коррекция ошибок на приеме. Это дает дополнительный резерв 6 дБ в соотношении сигнал/шум.

    Рис.4. Схема 4-х уровневого кодирования PAM-4

    уровень MAC

    Уровень MAC стандарта Gigabit Ethernet использует тот же самый протокол передачи CSMA/CD что и его предки Ethernet и Fast Ethernet. Основные ограничения на максимальную длину сегмента (или коллизионного домена) определяются этим протоколом.

    В стандарте Ethernet IEEE 802.3 принят минимальный размер кадра 64 байта. Именно значение минимального размера кадра определяет максимальное допустимое расстояние между станциями (диаметр коллизионного домена). Время, которого станция передает такой кадр - время канала - равно 512 BT или 51,2 мкс. Максимальная длина сети Ethernet определяется из условия разрешения коллизий, а именно время, за которое сигнал доходит до удаленного узла и возвращается обратно RDT не должно превышать 512 BT (без учета преамбулы).

    При переходе от Ethernet к Fast Ethernet скорость передачи возрастает, а время трансляции кадра длины 64 байта соответственно сокращается - оно равно 512 BT или 5,12 мкс (в Fast Ethernet 1 BT = 0,01 мкс). Для того, чтобы можно было обнаруживать все коллизии до конца передачи кадра, как и раньше необходимо удовлетворить одному из условий:

    В Fast Ethernet был оставлен такой же минимальный размер кадра, как в Ethernet. Это сохранило совместимость, но привело к значительному уменьшению диаметра коллизионного домена.

    Опять же в силу преемственности стандарт Gigabit Ethernet должен поддерживать те же минимальный и максимальный размеры кадра, которые приняты в Ethernet и Fast Ethernet. Но поскольку скорость передачи возрастает, то соответственно уменьшается и время передачи пакета аналогичной длины. При сохранении прежней минимальной длины кадра это привело бы к уменьшению диаметра сети, который не превышал бы 20 метров, что могло быть мало полезным. Поэтому, при разработке стандарта Gigabit Ethernet было принято решение увеличить время канала. В Gigabit Ethernet оно составляет 4096 BT и в 8 раз превосходит время канала Ethernet и Fast Ethernet. Но, чтобы поддержать совместимость со стандартами Ethernet и Fast Ethernet, минимальный размер кадра не был увеличен, а было добавлено к кадру дополнительное поле, получившее название "расширение носителя".

    расширение носителя (carrier extension)

    Символы в дополнительном поле обычно не несут служебной информации, но они заполняют канал и увеличивают "коллизионное окно". В результате, коллизия будет регистрироваться всеми станциями при большем диаметре коллизионного домена.

    Если станция желает передать короткий (меньше 512 байт) кадр, до при передаче добавляется это поле - расширение носителя, дополняющее кадр до 512 байт. Поле контрольной суммы вычисляется только для оригинального кадра и не распространяется на поле расширения. При приеме кадра поле расширения отбрасывается. Поэтому уровень LLC даже и не знает о наличии поля расширения. Если размер кадра равен или превосходит 512 байт, то поле расширения носителя отсутствует. На рис.5 показан формат кадра Gigabit Ethernet при использовании расширения носителя.

    Рис.5. Кадр Gigabit Ethernet с полем расширения носителя.

    пакетная перегруженность (Packet Bursting)

    Расширение носителя - это наиболее естественное решение, которое позволило сохранить совместимость со стандартом Fast Ethernet, и такой же диаметр коллизионного домена. Но оно привело к излишней трате полосы пропускания. До 448 байт (512-64) может расходоваться в холостую при передаче короткого кадра. На стадии разработки стандарта Gigabit Ethernet компанией NBase Communications было внесено предложение по модернизации стандарта. Эта модернизация, получившая название пакетная перегруженность, позволяет эффективней использовать поле расширения. Если у станции/коммутатора имеется несколько небольших кадров для отправки, то первый кадр дополняется полем расширения носителя до 512 байт, и отправляется. Остальные кадры отправляются вслед с минимальным межкадровым интервалом в 96 бит, с одним важным исключением - межкадровый интервал заполняется символами расширения, (рис.6а). Таким образом среда не замолкает между посылками коротких оригинальных кадров, и ни какое другое устройство сети не может вклиниться в передачу. Такое пристраивание кадров может происходить до тех пор, пока полное число переданных байт не превысит 1518. Пакетная перегруженность уменьшать вероятность образования коллизий, поскольку перегруженный кадр может испытать коллизию только на этапе передачи первого своего оригинального кадра, включая расширение носителя, что безусловно увеличивает производительность сети, особенно при больших нагрузках (рис.6-б).

    Рис.6. Пакетная перегруженность: а) передача кадров; б) поведение полосы пропускания.

    По материалам компании «Телеком Транспорт»

    Решите, необходимо ли совершенствовать вашу сеть.

    • Если вы, а также члены вашей семьи, регулярно загружаете большие файлы, транслируете медиа в интернете или выполняете другие задачи, сильно нагружающие вашу сеть, к примеру, сервер с файловым хостингом, или играете в онлайн игры, вы бы с удовольствием вложились в улучшение до Gigabit Ethernet.
    • Средним и большим предприятиям требуется, чтобы много пользователей были соединены по сети и одновременно могли повысить свою продуктивность.
    • Частные лица, которые используют интернет в одиночку для не ресурсоемких сетевых задач, как электронная почта, мгновенные сообщения или веб-серфинг, могут не увидеть выгоды в улучшении сетевого доступа до Gigabit Ethernet.
  • Осмотрите сетевые порты на ваших устройствах.

    • Если вы купили ваш компьютер, игровую консоль или другое устройство с сетевым доступом в последние два-три года, они, возможно, уже оснащены сетевыми портами, готовыми к работе с Gigabit Ethernet.
    • В Windows : Нажмите на меню пуск, нажмите на строку поиска (или нажмите "Run..." в соответствии с версией Windows), введите ncpa.cpl и нажмите «enter». Нажмите правой кнопкой по иконке вашего сетевого адаптера, потом левой по "Свойства". В открывшемся диалоговом окне нажмите кнопку "Настроить…". В новом диалоговом окне найдите пункт, соответствующий "типу соединения" или "Скорости", и выберите его. Если вы увидите в выпадающем меню "1.0 Гбит/с, Полный дуплекс" или что-то подобное, ваш компьютер готов к подключению по стандарту Gigabit Ethernet. Если нет, то вам возможно потребуется обновить ваше оборудование, как описано ниже в шаге 6.
    • В Ubuntu 12.04 : Нажмите правой кнопкой по иконке сетей на верхней панели рабочего стола, а потом левой кнопкой "Информация о соединении". В появившемся диалоговом окне посмотрите на значение "Скорость". Значение в 1000 Мбит/с отображает готовность системы к стандарту Gigabit Ethernet.
    • Для других устройств проверьте инструкцию и технические характеристики устройства. Ищите в характеристиках сетевого адаптера ключевые слова "gigabit" или "1000 Мбит/с".
  • Не забывайте о сетевых принтерах.

    • Если вы часто используете сетевой принтер, вы могли бы решить проверить и его на готовность к стандарту Gigabit Ethernet. Проверьте инструкцию, также как в шаге выше.
  • Проверьте ваши кабели.

    • Посмотрите на оплетку ваших сетевых кабелей и обратите внимание на тип кабеля, напечатанный на ней. Если они промаркированы "Cat5e", значит вы готовы. Если нет, вы можете купить новые кабели, что обычно недорого.
    • В большинстве случаев, кабели Cat6 не предоставляютзначительное повышение производительности в сравнении с кабелями Cat5e. Тем не менее, если вы хотите улучшить вашу сеть в будущем, вы можете использовать кабели Cat6.
  • Проверьте ваш роутер/свитч.

    • Даже если все части вашей сети будут улучшены до стандарта Gigabit Ethernet, а роутер и свитч будут все ещё с FastEthernet, они станут бутылочным горлышком вашей сети.
    • Для домашнего использования многие люди уже пользуются комбинацией роутера и свитча в едином устройстве. Домашний гигабитный роутер/свитч такой же.
  • * Для домашнего использования многие люди уже пользуются комбинацией роутера и свитча в едином устройстве. Домашний гигабитный роутер/свитч такой же.

    • Шаг 2 описывает, как проверить ваше сетевое оборудование на совместимость со стандартом Gigabit Ethernet. Если в определили, что совместимости нет, то у вас есть несколько вариантов.
    • Экономичным вариантом станет покупка гигабитной сетевой PCI-карты. Эта карта устанавливается сзади в ваш компьютер вместе с остальным оборудованием. Недостатками такой конфигурации станут скорости, ниже оптимальных, и всегда нужно будет помнить, какой из портов соединен с гигабитной сетевой картой, а какой –со старой FastEthernet. Случайное подключение кабеля Cat5e к порту FastEthernet не даст никакого прироста производительности.
    • Несколько более дорогим, но более эффективным решением может стать замена материнской платы вашего компьютера. Удостоверьтесь, что материнская плата оборудована встроенным гигабитным адаптером. Для максимальной скорости купите 64-битную материнскую плату, будучи уверенным в том, что ваш процессор совместим с ней, или вы сможете его купить. Большинство крупных компьютерных магазинов помогут вам выбрать правильный продукт и установят его для вас, чтобы убедится в совместимости оборудования.
  • Обновите программное обеспечение ваших устройств до новейшего.

    • Теперь, когда вы улучшили оборудование, или даже если вам не нужно было его улучшать, пришло время удостоверится в том, что все ваше программное обеспечение и драйверы обновлены до последней версии. Это нужно для максимальной скорости, производительности и надежности. Обновления, включенные в пакет обновлений Windows, могут быть недостаточными. Посетите веб-сайты производителей ваших устройств и загрузите последние обновления прямо из источников.
  • Улучшите ваше хранилище для медиафайлов и ОЗУ.

    • В идеале, файлы могут быть перемещены так быстро как медиа, имеется в виду жесткий диск, на котором они сохранены.
    • Удостоверьтесь, что скорость вашего жесткого диска(ов) на уровне 7200 об/мин, и рассмотрите организацию RAID 1 для увеличения скорости доступа.
    • Альтернативным решением может стать использование твердотельного накопителя. Он дороже обычного жесткого диска, но позволяет считывать и записывать почти мгновенно, позволяя исключить бутылочное горлышко обычных жестких дисков – их скорость.
    • Увеличение объема ОЗУ в вашей системе также увеличит общую производительность. Хорошим минимумом будут 8 Гб, но возможно вы не заметите значительного улучшения после 12 Гб ОЗУ, если вы не используете много ресурсоемких задач, как 3D-рендер или программы симуляции.
  • Решил я себе немного проапгрейдить компьютер, а так как мне надо было 2 сетевые карты и слотов не хватало, то понадобилась сетевая карта в PCI-E слот. Времени было достаточно потому решил купить на алиэкспрессе.

    Нашел, по описанию полностью устроила, по цене тоже. При проверке продавца показало, что уровень риска практически нулевой. Заказал, посылка пришла через 20 дней после отправки продавцом. Кстати, сейчас у продавца скидка или распродажа, но карта стоит 3.63.



    Но так как я не очень доверяю китайским производителям, то сначала внимательно посмотрел на плату. Интуиция меня не обманула, главная микросхема была припаяна мало того что со смещением, но еще и были залипы припоя в трех местах (обозначены стрелочками).

    Я не стал особо разбираться за что отвечают данные выводы, но залип был на ногах связи с микросхемой памяти, и выводы питания, т.е. плата гарантированно не определилась бы как минимум, как максимум я бы остался без нового компа.

    Ну и конечно смешное обозначение скорости линка в Герцах.

    Не вставляя в комп написал продавцу, что мол посылку получил, но не работает, плохо припаяна микросхема. На что он ответил что мол пришлите видео. Что он там собирался разглядеть, мне непонятно. Сказал ему что попробую сделать фото, но такое все мелкое, что врядли он что то увидит. Отправил сообщение.

    Не дождавшись ответа взял паяльник, убрал сопли, проверил карту - работает.

    Определилась карта как Realtek PCIe GBE Family Controller, а из-за у меня уже были установлены драйверы Realtek, то карта стала работать сразу, ничего доустанавливать не пришлось.
    Диспетчер оборудование пишет о ней -
    PCI\VEN_10EC&DEV_8168&SUBSYS_816810EC&REV_02\4&293AFFCC&1&00E0

    Протестировал скорость копирования, правда все уперлось в скорость порта роутера (с удивлением обнаружил, что мне нечем протестировать карту на гигабитной скорости), пока нечем протестировать гигабит, да и если честно, пока не вижу в нем крайней необходимости, хватает и 100 мегабит, но 100 мегабит PCI-E как то не видел, потому пускай живет. Тем более, что за эти деньги я у нас врядли куплю.

    В итоге написал продавцу что чип перепаял, карта работает, получение подтвержу, но очень недоволен. Качество изготовления очень плохое. В итоге продавец предложил возврат в 3 доллара, я согласился, собственно к продавцу у меня претензий особо не было, на контакт шел сразу и без проблем.

    Но суть не в этом, мораль данного микро-обзора в том, что на всякий случай перед тем, как вставить себе в компьютер новую железку, не поленитесь внимательно осмотреть ее, что бы не остаться без компьютера вообще.

    В общем доставка отлично, карта самая банальная, цена приемлемая, доставка быстрая, но качество хромает и довольно сильно.

    Наверное так собирали мою сетевку

    Планирую купить +6 Добавить в избранное Обзор понравился +28 +50