Войти
Android, Windows, Apple, Ликбез. Социальные сети. Драйверы
  • Японские телефоны Новый японский смартфон
  • Lenovo G500S: характеристики, основные особенности
  • Определяем серию продукта видеокарт Nvidia Характеристики карты nvidia 9800 gt
  • А конкуренты у смартфона есть
  • Что такое расширение файла TRZ?
  • Не работает динамик в "айфоне"
  • Оптрон обозначение на схеме. Условные обозначения в электрических схемах гост

    Оптрон обозначение на схеме. Условные обозначения в электрических схемах гост

    Лекция № 4

    Полупроводниковые диоды

    На рисунке ниже показано условное графическое обозначение полупроводникового диода на принципиальных схемах.

    Классификация полупроводниковых диодов

    - Выпрямительные диоды;

    - Диоды Шоттки;

    - Импульсные диоды;

    - СВЧ диоды;

    - Варикапы;

    - Диоды стабилизирующие напряжение (стабилитрон, двуханодный стабилитрон, стабистор);

    - Светодиоды;

    - Фотодиоды;

    - Оптопара (светодиод+фотодиод);

    - Тоннельный диод.

    Условные графические обозначения диодов разных типов

    Принцип работы диода

    В основе принципа работы полупроводникового диода лежит p-n переход. Анод соответствует p области перехода, а катод – n области. Про физику работы p-n перехода можно почитать в книге Е.А. Москатова “Электронная техника”. В этой лекции словосочетания диод и p-n переход будут использоваться в качестве синонимов. Каждый p-n переход может работать в качестве диода, но не каждый диод является p-n переходом  Дело в том, что существуют диоды Шоттки, использующие свойства перехода Шоттки (контакт металл-полупроводник).

    Если напряжение на аноде больше напряжения на катоде – диод включен в прямом направлении .

    Если напряжение на аноде меньше напряжения на катоде – диод включен в обратном направлении.

    С увеличением прямого напряжения на диоде, его сопротивление уменьшается, а ток через диод увеличивается. При отсутствии прямого напряжения и тем более при приложении к диоду обратного напряжения (обратного смещения), сопротивление p-n перехода настолько велико, что можно считать его разрывом в цепи. При прямом падении напряжения на диоде равном 0.6-0.7 вольт, сопротивление диода составляет от нескольких десятков до нескольких сотен Ом.

    Вышесказанное наглядно подтверждает вольтамперная характеристика полупроводникового диода:

    Ток через p-n переход описывается формулой:

    где I 0 – ток, вызванный прохождением собственных носителей заряда;

    e – основание натурального логарифма;

    e’ – заряд электрона;

    Т – температура;

    U – напряжение, приложенное к p-n переходу;

    k – постоянная Больцмана.

    –температурный потенциал, при комнатной температуре равный примерно 0,025 В.

    Свойства p-n перехода существенно зависят от температуры окружающей среды. При повышении температуры возрастает генерация пар носителей заряда – электронов и дырок, т.е. увеличивается концентрация неосновных носителей и собственная проводимость полупроводника, что, прежде всего, сказывается на изменении обратного тока. При увеличении температуры обратный ток увеличивается примерно в 2 раза при изменении температуры () на каждые 100С у германиевых и на каждые 7,50С у кремниевых диодов.

    Максимально допустимое увеличение обратного тока определяет максимально допустимую температуру диода, которая составляет 80 … 100°С для германиевых диодов и 150 … 200°С – для кремниевых.

    Минимально допустимая температура диодов лежит в пределах минус (60 … 70) °С.

    При достижении некоторой величины обратного напряжения на диоде, сопротивление диода резко уменьшается и ток через диод сильно возрастает. Это явление называется пробоем p-n перехода. Пробой p-n перехода (диода), в свою очередь может быть обратимым и необратимым. Обратимый пробой используется для стабилизации напряжения при помощи стабилитронов.

    Важный класс диодов – диоды Шоттки. Падение напряжения на диоде Шоттки в открытом состоянии составляет 0.3 вольта (в отличие от 0.6-0.7 вольт для диода на p-n переходе). Условное графическое обозначение диодов Шоттки на схемах:

    Частотные свойства диодов, барьерная емкость

    Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода: барьерной и диффузионной.

    Первый вид ёмкости – это ёмкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью

      Относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единица);

      Электрическая постоянная, численно равная 8,854187817.10 − 12

    S p - n – площадь p-n перехода;

    Второй тип ёмкости – это диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.

    Q – суммарный заряд, протекающий через p-n переход.

    Эквивалентная схема p-n перехода.

    Ri очень мало при прямом включении и будет велико при обратном включении .

    Если на p-n переход подавать переменное напряжение, то ёмкостное сопротивление p-n перехода будет уменьшаться с увеличением частоты, и при некоторых больших частотах ёмкостное сопротивление может сравняться с внутренним сопротивлением p-n перехода при прямом включении. В этом случае при обратном включении через эту ёмкость потечёт достаточно большой обратный ток, и p-n переход потеряет свойство односторонней проводимости.

    Вывод: чем меньше величина ёмкости p-n перехода, тем на более высоких частотах он может работать.

    На частотные свойства основное влияние оказывает барьерная ёмкость, т. к. диффузионная ёмкость имеет место при прямом включении, когда внутреннее сопротивление p-n перехода мало.

    Выпрямительные диоды

    Основная задачи диода – выпрямление переменного тока/напряжения выполняется за счет вентильных свойств p-n перехода.

    Если вы вспомните, что диод - это проводник, пропускающий ток только в одном направлении, то нетрудно понять, как работает схема выпрямителя. Представленная схема называется однополупериодным выпрямителем , так как она использует только половину входного сигнала (половину периода).

    Если выпрямленный ток больше максимально допустимого прямого тока диода, то в этом случае допускается параллельное включение диодов

    Добавочные сопротивления Rд величиной от единиц до десятков Ом включаются с целью выравнивания токов в каждой из ветвей.

    Если напряжение в цепи превосходит максимально допустимое обратное напряжение диода, то в этом случае допускается последовательное включение диодов

    Шунтирующие сопротивления величиной несколько сот кОм включают для выравнивания падения напряжения на каждом из диодов.

    Однополупериодный выпрямитель неэффективен, так как мы теряем половину напряжения за период, соответственно выходное напряжение в два раза меньше.

    Для устранения этого недостатка используют двухполупериодный выпрямитель:

    В течение положительного полупериода напряжения Ua (+) диоды VD1 и VD4 открыты, а VD2 и VD3 – закрыты. Ток будет протекать по пути: верхняя ветвь (+), диод VD1, нагрузка, диод VD4, нижняя ветвь (-).

    В течение отрицательного полупериода напряжения Ua диоды VD1 и VD4 закрываются, а диоды VD2 и VD3 открываются. Ток будет протекать от (+), нижняя ветвь, диод VD3, нагрузка, диод VD2, верхняя ветвь (-).

    Поэтому ток через нагрузку будет протекать в одном и том же направлении за оба полупериода. Схема выпрямителя называется двухполупериодной.

    Выпрямленные диодным мотом (двухполупериодной схемой) сигналы, еще не могут быть использованы как сигналы постоянного тока. Дело в том, что их можно считать сигналами постоянного тока только в том отношении, что они не изменяют свою полярность. На самом деле в них присутствует большое количество «пульсаций» (периодических колебаний напряжения относительно постоянного значения), которые необходимо сгладить для того, чтобы получить настоящее напряжение постоянного тока. Для этого схему выпрямителя нужно дополнить фильтром низких частот.

    Резистор R в приведенной выше схеме исп. Не обязательно, так как диодный мост имеет определенное выходное сопротивление.

    Расщепление напряжения питания. Широко распространена мостовая однофазная двухполупериодная схема выпрямителя, показанная на рисунке ниже. Она позволяет рсщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности). Эта схема эффективна, так как в каждом полупериоде входного сигнала используются обе половины вторичной обмотки.

    Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

    Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

    Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

    УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

    Диоды, какие они бывают?

    Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

    Обозначение диодного моста

    Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

    Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

    Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


    Специфичные диоды

    Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера , который в отечественной литературе называют – стабилитрон .


    Обозначение стабилитрона (диод Зенера)

    Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

    Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

    Следующий прибор – варикап , принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

    Варикап — обозначение на схеме и внешний вид

    – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

    Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

    Обозначение динистора

    Светодиоды и оптоэлектроника

    Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


    В реальности есть много разных способов определить полярность, подробнее об этом есть целая Ниже, для примера, распиновка зеленого светодиода.

    Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

    Фотодиод , прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


    Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

    Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


    Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

    В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

    Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

    Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

    Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

    Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

    Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

    Нормативные документы

    Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

    Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

    Номер ГОСТа Краткое описание
    2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
    2.747 68 Требования к размерам отображения элементов в графическом виде.
    21.614 88 Принятые нормы для планов электрооборудования и проводки.
    2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
    2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
    2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
    21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

    Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

    Виды электрических схем

    В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

    Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.



    Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

    Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

    Графические обозначения

    Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

    Примеры УГО в функциональных схемах

    Ниже представлен рисунок с изображением основных узлов систем автоматизации.


    Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

    Описание обозначений:

    • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
    • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
    • С – Отображение исполнительных механизмов (ИМ).
    • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
    1. Происходит открытие РО
    2. Закрытие РО
    3. Положение РО остается неизменным.
    • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
    • F- Принятые отображения линий связи:
    1. Общее.
    2. Отсутствует соединение при пересечении.
    3. Наличие соединения при пересечении.

    УГО в однолинейных и полных электросхемах

    Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

    Источники питания.

    Для их обозначения приняты символы, приведенные на рисунке ниже.


    УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

    Описание обозначений:

    • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
    • В – значок электричества, отображающий переменное напряжение.
    • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
    • D – Отображение аккумуляторного или гальванического источника питания.
    • E- Символ батареи, состоящей из нескольких элементов питания.

    Линии связи

    Базовые элементы электрических соединителей представлены ниже.


    Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

    Описание обозначений:

    • А – Общее отображение, принятое для различных видов электрических связей.
    • В – Токоведущая или заземляющая шина.
    • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
    • D — Символ заземления.
    • E – Электрическая связь с корпусом прибора.
    • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
    • G – Пересечение с отсутствием соединения.
    • H – Соединение в месте пересечения.
    • I – Ответвления.

    Обозначения электромеханических приборов и контактных соединений

    Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.


    УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

    Описание обозначений:

    • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
    • В – УГО воспринимающей части электротепловой защиты.
    • С – отображение катушки устройства с механической блокировкой.
    • D – контакты коммутационных приборов:
    1. Замыкающие.
    2. Размыкающие.
    3. Переключающие.
    • Е – Символ для обозначения ручных выключателей (кнопок).
    • F – Групповой выключатель (рубильник).

    УГО электромашин

    Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.


    Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

    Описание обозначений:

    • A – трехфазные ЭМ:
    1. Асинхронные (ротор короткозамкнутый).
    2. Тоже, что и пункт 1, только в двухскоростном исполнении.
    3. Асинхронные ЭМ с фазным исполнением ротора.
    4. Синхронные двигатели и генераторы.
    • B – Коллекторные, с питанием от постоянного тока:
    1. ЭМ с возбуждением на постоянном магните.
    2. ЭМ с катушкой возбуждения.

    УГО трансформаторов и дросселей

    С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.


    Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

    Описание обозначений:

    • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
    • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
    • С – Отображение двухкатушечного трансформатора.
    • D – Устройство с тремя катушками.
    • Е – Символ автотрансформатора.
    • F – Графическое отображение ТТ (трансформатора тока).

    Обозначение измерительных приборов и радиодеталей

    Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.


    Примеры условных графических обозначений электронных компонентов и измерительных приборов

    Описание обозначений:

    1. Счетчик электроэнергии.
    2. Изображение амперметра.
    3. Прибор для измерения напряжения сети.
    4. Термодатчик.
    5. Резистор с постоянным номиналом.
    6. Переменный резистор.
    7. Конденсатор (общее обозначение).
    8. Электролитическая емкость.
    9. Обозначение диода.
    10. Светодиод.
    11. Изображение диодной оптопары.
    12. УГО транзистора (в данном случае npn).
    13. Обозначение предохранителя.

    УГО осветительных приборов

    Рассмотрим, как на принципиальной схеме отображаются электрические лампы.


    Описание обозначений:

    • А – Общее изображение ламп накаливания (ЛН).
    • В — ЛН в качестве сигнализатора.
    • С – Типовое обозначение газоразрядных ламп.
    • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

    Обозначение элементов в монтажной схеме электропроводки

    Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


    Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.



    Почти все УОС, все изделия радиоэлектроники и электротехники, изготавливаемые промышленными организациями и предприятиями, домашними мастерами, юными техниками и радиолюбителями, содержат в своем составе определенное количество разнообразных покупных ЭРИ и элементов, выпускаемых в основном отечественной промышленностью. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства. К ним можно отнести в первую очередь ППП, конденсаторы, резисторы, трансформаторы, дроссели, электрические соединители, аккумуляторы, ХИТ, переключатели, установочные изделия и некоторые другие виды ЭРЭ.

    Применяемые покупные комплектующие или самостоятельно изготавливаемые ЭРЭ обязательно находят свое отражение на принципиальных и монтажных электрических схемах устройств, в чертежах и другой ТД, которые выполняются в соответствии с требованиями стандартов ЕСКД.

    Особое внимание уделяется принципиальным электрическим схемам, которые определяют не только основные электрические параметры, но и все входящие в устройства элементы и электрические связи между ними. Для понимания и чтения принципиальных электрических схем необходимо тщательно ознакомиться с входящими в них элементами и комплектующими изделиями, точно знать область применения и принцип действия рассматриваемого устройства. Как правило, сведения о применяемых ЭРЭ указываются в справочниках и спецификации - перечне этих элементов.

    Связь перечня комплектующих ЭРЭ с их условными графическими обозначениями осуществляется через позиционные обозначения.

    Для построения условных графических обозначений ЭРЭ используются стандартизованные геометрические символы, каждый из которых применяют отдельно или в сочетании с другими. При этом смысл каждого геометрического образа в условном обозначении во многих случаях зависит от того, в сочетании с каким другим геометрическим символом он применяется.

    Стандартизованные и наиболее часто применяемые условные графические обозначения ЭРЭ в принципиальных электрических схемах приведены на рис.1. Эти обозначения касаются всех комплектующих элементов схем, включая ЭРЭ, проводники и соединения между ними. И здесь важнейшее значение приобретает условие правильного обозначения однотипных комплектующих ЭРЭ и изделий. Для этой цели применяются позиционные обозначения, обязательной частью которых является буквенное обозначение вида элемента, типа его конструкции и цифровое обозначение номера ЭРЭ. На схемах используется также дополнительная часть обозначения позиции ЭРЭ, указывающая функцию элемента, в виде буквы. Основные виды буквенных обозначений элементов схем приведены в табл.1.

    Обозначения на чертежах и схемах элементов общего применения относятся к квалификационным, устанавливающим род тока и напряжения, вид соединения, способы регулирования, форму импульса, вид модуляции, электрические связи, направление передачи тока, сигнала, потока энергии и др.

    В настоящее время у населения и в торговой сети находится в эксплуатации значительное количество разнообразных электронных приборов и устройств, радио- и телевизионной аппаратуры, которые изготавливаются зарубежными фирмами и различными акционерными обществами. В магазинах можно приобрести различные типы ЭРИ и ЭРЭ с иностранными обозначениями. В табл. 1. 2 приведены сведения о наиболее часто встречающихся ЭРЭ зарубежных стран с соответствующими обозначениями и их аналоги отечественного производства.

    Эти сведения впервые публикуются в таком объеме.

    1- транзистор структуры р- n-р в корпусе, общее обозначение;

    2- транзистор структуры п-р-п в корпусе, общее обозначение,

    3 - транзистор полевой с p-n-переходом и п каналом,

    4 - транзистор полевой с p-n-переходом и р каналом,

    5 - транзистор однопереходный с базой п типа, б1, б2 - выводы базы, э - вывод эмиттера,

    6 - фотодиод,

    7 - диод выпрямительный,

    8 - стабилитрон (диод лавинный выпрямительный) односторонний,

    9 - диод тепло-электрический,

    10 - тиристор диодный, стираемый в обратном направлении;

    11 - стабилитрон (диодолавинный выпрямительный) с двусторонней
    проводимостью,

    12 - тиристор триодный.

    13 - фоторезистор,

    14 - переменный резистор, реостат, общее обозначение,

    15 - переменный резистор,

    16 - переменный резистор с отводами,

    17 - построечный резистор-потенциометр;

    18 - терморезистор с положительным температурным коэффициентом прямого нагрева (подогрева),

    19 - варистор,

    20 - конденсатор постоянной емкости, общее обозначение,

    21 - конденсатор постоянной емкости поляризованный;

    22 - конденсатор оксидный поляризованный электролитический, общее обозначение;

    23 - резистор постоянный, общее обозначение;

    24 - резистор постоянный с номинальной мощностью 0, 05 Вт;

    25 - резистор постоянный с номинальной мощностью 0, 125 Вт,

    26 - резистор постоянный с номинальной мощностью 0, 25 Вт,

    27 - резистор постоянный с номинальной мощностью 0, 5 Вт,

    28 - резистор постоянный с номинальной мощностью 1 Вт,

    29 - резистор постоянный с номинальной мощностью рассеяния 2 Вт,

    30 - резистор постоянный с номинальной мощностью рассеяния 5 Вт;

    31 - резистор постоянный с одним симметричным дополнительным отводом;

    32 - резистор постоянный с одним несимметричным дополнительным отводом;

    Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации

    33 - конденсатор оксидный неполяризованный,

    34 - конденсатор проходной (дуга обозначает корпус, внешний элекрод),

    35 - конденсатор переменной емкости (стрелка обозначает ротор);

    36 - конденсатор подстроечный, общее обозначение

    37 - варикап.

    38 - конденсатор помехоподавляющий;

    39 - светодиод,

    40 - туннельный диод;

    41 - лампа накаливания осветительная и сигнальная

    42 - звонок электрический

    43 - элемент гальванический или аккумуляторный;

    44 - линия электрической связи с одним ответвлением;

    45 - линия электрической связи с двумя ответвлениями;

    46 - группа проводов, подключенных к одной точке электрическою соединения. Два провода;

    47 - четыре провода, подключенных к одной точке электрическою соединения;

    48 - батарея из гальванических элементов или батарея аккумуляторная;

    49 - кабель коаксиальный. Экран соединен с корпусом;

    50 - обмотка трансформатора, автотрансформатора, дросселя, магнитного усилителя;

    51 - рабочая обмотка магнитного усилителя;

    52 - управляющая обмотка магнитного усилителя;

    53 - трансформатор без сердечника (магнитопровода) с постоянной связью (точками обозначены начала обмоток);

    54 - трансформатор с магнитодиэлектрическим сердечником;

    55 - катушка индуктивности, дроссель без магнитопровода;

    56 - трансформатор однофазный с ферромагнитным магнитопроводом и экраном между обмотками;

    57 - трансформатор однофазный трехобмоточный с ферромагнитным магнитопроводом с отводом во вторичной обмотке;

    58 - автотрансформатор однофазный с регулированием напряжения;

    59 - предохранитель;

    60 - предохранитель выключатель;

    б1 - предохранитель-разъединитель;

    62 - соединение контактное разъемное;

    63 - усилитель (направление передачи сигнала указывает вершина треугольника на горизонтальной линии связи);

    64 - штырь разъемного контактного соединения;

    Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации

    65 - гнездо разъемною контактного соединения,

    66 - контакт разборного соединения например с помощью зажима

    67 - контакт неразборного соединения, например осуществленного пайкой

    68 - выключатель кнопочный однополюсный нажимной с Замыкающим контактом
    самовозвратом

    69 - контакт коммутационного устройства размыкающий, общее обозначение

    70 - контакт коммутационного устройства (выключателя, реле) замыкающий, общее обозначение. Выключатель однополюсный.

    71 - контакт коммутационного устройства переключающий, общее обозначение. Однополюсный переключатель на два направления.

    72- контакт переключающий трехпозиционный с нейтральным положением

    73 - контакт замыкающий без самовозврата

    74 - выключатель кнопочный нажимной с размыкающим контактом

    75 - выключатель кнопочный вытяжной с замыкающим контактом

    76 - выключатель кнопочный нажимной с возвратом кнопки,

    77 - выключатель кноночный вытяжной с размыкающим контактом

    78 - выключатель кнопочный нажимной с возвратом посредством вторичного нажатия кнопки,

    79 - реле электрическое с замыкающим размыкающим и переключающим контактами,

    80 - реле поляризованное на одно направление тока в обмотке с нейтральным положением

    81 - реле поляризованное на оба направления тока в обмотке с нейтральным положением

    82 - реле электротепловое без самовозврата, с возвратом посредством вторичного нажатия кнопки,

    83- разъемное однополюсное соединение

    84 - гнездо пятипроводного контактного разъемного соединения,

    85 штырь контактного разъемного коаксиального соединения

    86 - гнездо контактною соединения

    87 - штырь четырехпроводного соединения,

    88 гнездо четырехпроводного соединения

    89 - перемычка коммутационная размыкающая цепь

    Условные обозначения элементов схем

    Стандартные условные графические и буквенные обозначения элементов электрических схем

    Е Источник ЭДС
    R Резистор, активное сопротивление
    L Индуктивность, катушка
    C Емкость, конденсатор
    G Генератор переменного тока, питающая схема
    M Электродвигатель переменного тока
    T Трансформатор
    Q Силовой выключатель (на напряжение свыше 1кВ)
    QW Выключатель нагрузки
    QS Разъединитель
    F Предохранитель
    Сборные шины с присоединениями
    Соединение разъемное
    QA Автоматический выключатель на напряжение до 1 кВ
    КМ Контактор, магнитный пускатель
    S Рубильник
    ТА Трансформатор тока
    ТА Трансформатор тока нулевой последовательности
    TV Трехфазный или три однофазных трансформатора напряжения
    F Разрядник
    К Реле
    КА, KV, KT, KL Обмотка реле
    КА, KV, KT, KL Контакт замыкающий реле
    КА, KV, KT, KL Контакт размыкающий реле
    КТ Контакт реле времени, замыкающий с выдержкой на срабатывание
    КТ Контакт реле времени, замыкающий с выдержкой на возврат
    Прибор измерительный показывающий
    Прибор измерительный регистрирующий
    Амперметр
    Вольтметр
    Ваттметр
    Варметр

    Использованы материалы сайтов.

    Содержание:

    Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

    Характеристики и параметры диодов

    В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

    В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят , и . Все перечисленные признаки дают возможность определить диод по внешнему виду.

    Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

    Обозначения и цветовая маркировка диодов

    Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

    Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

    Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

    Маркировка импортных диодов

    В настоящее время широко используются -диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

    В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

    Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

    Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

    По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

    Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

    Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

    Маркировка диодов анод катод

    Каждый диод, как и резистор, оборудован двумя выводами - анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

    Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

    • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
    • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.