Войти
Android, Windows, Apple, Ликбез. Социальные сети. Драйверы
  • Японские телефоны Новый японский смартфон
  • Lenovo G500S: характеристики, основные особенности
  • Определяем серию продукта видеокарт Nvidia Характеристики карты nvidia 9800 gt
  • А конкуренты у смартфона есть
  • Что такое расширение файла TRZ?
  • Не работает динамик в "айфоне"
  • Пзс матрица в локации. Приборы с зарядовой связью - основа современной телевизионной техники

    Пзс матрица в локации. Приборы с зарядовой связью - основа современной телевизионной техники

    Отдельно взятый элемент чувствителен во всем видимом спектральном диапазоне, поэтому над фотодиодами цветных ПЗС-матриц используется светофильтр, который пропускает только один из трёх цветов: красного (Red), зелёного (Green), синего (Blue) или жёлтого (Yellow), пурпурного (Magenta), бирюзового (Cyan). А в свою очередь в чёрно-белой ПЗС-матрице таких фильтров нет.


    УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ПИКСЕЛЯ

    Пиксель состоит из p-подложки, покрытой прозрачным диэлектриком, на который нанесён светопропускающий электрод, формирующий потенциальную яму.

    Над пикселем может присутствовать светофильтр (используется в цветных матрицах) и собирающая линза (используется в матрицах, где чувствительные элементы не полностью занимают поверхность).

    На светопропускающий электрод, расположенный на поверхности кристалла, подан положительный потенциал. Свет, падающий на пиксель, проникает вглубь полупроводниковой структуры, образуя электрон-дырочную пару. Образовавшиеся электрон и дырка растаскиваются электрическим полем: электрон перемещаются в зону хранения носителей (потенциальную яму), а дырки перетекают в подложку.

    Для пикселя присущи следующие характеристики:

    • Ёмкость потенциальной ямы - это количество электронов, которое способна вместить потенциальная яма.
    • Спектральная чувствительность пикселя - зависимость чувствительности (отношение величины фототока к величине светового потока) от длины волны излучения.
    • Квантовая эффективность (измеряется в процентах) - физическая величина, равная отношению числа фотонов, поглощение которых вызвало образование квазичастиц, к общему числу поглощённых фотонов. У современных ПЗС матриц этот показатель достигает 95%. Для сравнения, человеческий глаз имеет квантовую эффективность порядка 1%.
    • Динамический диапазон - отношение напряжения или тока насыщения к среднему квадратичному напряжению или току темнового шума. Измеряется в дБ.
    УСТРОЙСТВО ПЗС-МАТРИЦЫ И ПЕРЕНОСА ЗАРЯДА


    ПЗС-матрица разделена на строки, а в свою очередь каждая строка разбита на пиксели. Строки разделены между собой стоп слоями (p +), которые не допускают перетекания зарядов между ними. Для перемещения пакета данных используются параллельный, он же вертикальный (англ. VCCD) и последовательный, он же горизонтальный (англ. HCCD) регистры сдвига.

    Простейший цикл работы трехфазного регистра сдвига начинается с того, что на первый затвор подается положительный потенциал, в результате чего образуется яма, заполненная образовавшимися электронами. Затем на второй затвор подадим потенциал, выше, чем на первом, вследствие чего под вторым затвором образуется более глубокая потенциальная яма, в которую перетекут электроны из под первого затвора. Чтобы продолжить передвижение заряда следует уменьшить значение потенциала на втором затворе, и подать больший потенциал на третий. Электроны перетекают под третий затвор. Данный цикл продолжается от места накопления до непосредственно считывающего горизонтального резистора. Все электроды горизонтального и вертикального регистров сдвига образуют фазы (фаза 1, фаза 2 и фаза 3).

    Классификация ПЗС-матриц по цветности:

    • Чёрно-белые
    • Цветные

    Классификация ПЗС-матриц по архитектуре:

    Зелёным цветом обозначены фоточувствительные ячейки, серым - непрозрачные области.

    Для ПЗС-матрицы присущи следующие характеристики:

    • Эффективность передачи заряда - отношение количества электронов в заряде в конце пути по регистру сдвига к количеству в начале.
    • Коэффициент заполнения - отношение площади заполненной светочувствительными элементами к полной площади светочувствительной поверхности ПЗС-матрицы.
    • Темновой ток - электрический ток, который протекает по фоточувствительному элементу, в отсутствие падающих фотонов.
    • Шум считывания - шум, возникающий в схемах преобразования и усиления выходного сигнала.

    Матрицы с кадровым переносом. (англ. frame transfer).

    Преимущества:

    • Возможность занять 100% поверхности светочувствительными элементами;
    • Время считывания ниже, чем у матрицы с полнокадровым переносом;
    • Смазывание меньше, чем в ПЗС-матрице с полнокадровым переносом;
    • Имеет преимущество рабочего цикла по сравнению полнокадровой архитектурой: ПЗС-матрица с кадровым переносом всё время собирает фотоны.

    Недостатки:

    • При считывании данных следует перекрывать затвором источник света, чтобы избежать появления эффекта смазывания;
    • Увеличен путь перемещения заряда, что негативно сказывается на эффективности передачи заряда;
    • Изготовление и производство данных матриц дороже, чем устройств с полнокадровым переносом.

    Матрицы с межстрочным переносом или матрицы с буферизацией столбцов (англ. Interline-transfer).

    Преимущества:

    • Нет необходимости применять затвор;
    • Отсутствует смазывание.

    Недостатки:

    • Возможность заполнить поверхность чувствительными элементами не более чем на 50%.
    • Скорость считывания ограничена скоростью работы регистра сдвига;
    • Разрешающая способность ниже, чем у ПЗС-матриц с кадровым и полнокадровым переносом.

    Матрицы со строчно-кадровым переносом или матрицы с буферизацией столбцов (англ. interline).

    Преимущества:

    • Процессы накопления и переноса заряда пространственно разделены;
    • Заряд из элементов накопления передаётся в закрытые от света ПЗС-матрицы регистры переноса;
    • Перенос заряда всего изображения осуществляется за 1 такт;
    • Отсутствует смазывание;
    • Интервал между экспонированиями минимален и подходит для записи видео.

    Недостатки:

    • Возможность заполнить поверхность чувствительными элементами не более чем на 50%;
    • Разрешающая способность ниже, чем у ПЗС-матриц с кадровым и полнокадровым переносом;
    • Увеличен путь перемещения заряда, что негативно сказывается на эффективности передачи заряда.

    ПРИМЕНЕНИЕ ПЗС-МАТРИЦ

    НАУЧНОЕ ПРИМЕНЕНИЕ

    • для спектроскопии;
    • для микроскопии;
    • для кристаллографии;
    • для рентгеноскопии;
    • для естественных наук;
    • для биологических наук.

    КОСМИЧЕСКОЕ ПРИМЕНЕНИЕ

    • в телескопах;
    • в звёздных датчиках;
    • в спутниках слежения;
    • при зондировании планет;
    • бортовое и ручное оборудование экипажа.

    ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ

    • для проверки качества сварных швов;
    • для контроля равномерности окрашенных поверхностей;
    • для исследования износостойкости механических изделий;
    • для считывания штрих-кодов;
    • для контроля качества упаковки продукции.

    ПРИМЕНЕНИЕ ДЛЯ ОХРАНЫ ОБЪЕКТОВ

    • в жилых квартирах;
    • в аэропортах;
    • на строительных площадках;
    • на рабочих местах;
    • в «умных» камерах, распознающих лицо человека.

    ПРИМЕНЕНИЕ В ФОТОГРАФИРОВАНИИ

    • в профессиональных фотоаппаратах;
    • в любительских фотоаппаратах;
    • в мобильных телефонах.

    МЕДИЦИНСКОЕ ПРИМЕНЕНИЕ

    • в рентгеноскопии;
    • в кардиологии;
    • в маммографии;
    • в стоматологии;
    • в микрохирургии;
    • в онкологии.

    АВТО-ДОРОЖНОЕ ПРИМЕНЕНИЕ

    • для автоматического распознавания номерных знаков;
    • для контроля скорости;
    • для управления транспортным потоком;
    • для пропуска на стоянку;
    • в полицейских системах наблюдения.

    Как возникают искажения при съёмке движущихся объектов на сенсор со строковым затвором:


    Сенсор - главный элемент цифровой камеры

    ердцем любой цифровой видео- или фотокамеры (в настоящее время границы между этими типами устройств постепенно стираются) является светочувствительный сенсор. Он преобразует видимый свет в электрические сигналы, используемые для дальнейшей обработки с помощью электронных схем. Из школьного курса физики известно, что свет можно рассматривать как поток элементарных частиц - фотонов. Фотоны, попадая на поверхность некоторых полупроводниковых материалов, способны приводить к образованию электронов и дырок (напомним, что дыркой в полупроводниках принято называть вакантное место для электрона, образующееся в результате разрыва ковалентных связей между атомами полупроводникового вещества). Процесс генерации электронно-дырочных пар под воздействием света возможен только в том случае, когда энергии фотона достаточно, чтобы «оторвать» электрон от «родного» ядра и перевести его в зону проводимости. Энергия фотона напрямую связана с длиной волны падающего света, то есть зависит от так называемого цвета излучения. В диапазоне видимого (то есть воспринимаемого человеческим глазом) излучения энергии фотонов оказывается достаточно для того, чтобы порождать генерацию электронно-дырочных пар в таких полупроводниковых материалах, как, например, кремний.

    Поскольку количество образующихся фотоэлектронов прямо пропорционально интенсивности светового потока, появляется возможность математически связывать количество падающего света с величиной порождаемого им заряда. Именно на этом простом физическом явлении и основан принцип действия светочувствительных сенсоров. Сенсор выполняет пять основных операций: поглощает фотоны, преобразует их в заряд, накапливает его, передает и преобразует в напряжение. В зависимости от технологии изготовления различные сенсоры осуществляют задачи хранения и накопления фотоэлектронов по-разному. Кроме того, могут использоваться различные методы преобразования накопленных электронов в электрическое напряжение (аналоговый сигнал), которое, в свою очередь, преобразуется в цифровой сигнал.

    ПЗС-сенсоры

    Исторически первыми в качестве светочувствительных элементов для видеокамер были использованы так называемые ПЗС-матрицы, массовое производство которых началось в 1973 году. Аббревиатура ПЗС расшифровывается как прибор с зарядовой связью; в английской литературе используется термин CCD (Charge-Coupled Device). Простейший ПЗС-сенсор представляет собой конденсатор, способный под воздействием света накапливать электрический заряд. Обычный конденсатор, состоящий из двух разделенных слоем диэлектрика металлических пластин, здесь не подойдет, поэтому используют так называемые МОП-конденсаторы. По своей внутренней структуре такие конденсаторы представляют собой сандвич из металла, оксида и полупроводника (от первых букв используемых компонентов они и получили свое название). В качестве полупроводника используется легированный кремний p-типа, то есть такой полупроводник, в котором за счет добавления атомов примеси (легирования) образуются избыточные дырки. Над полупроводником расположен тонкий слой диэлектрика (оксида кремния), а сверху - слой металла, выполняющий функцию затвора, если следовать терминологии полевых транзисторов (рис. 1).

    Как уже отмечалось, под воздействием света в полупроводнике образуются электронно-дырочные пары. Однако наряду с процессом генерации происходит и обратный процесс - рекомбинация дырок и электронов. Поэтому следует предпринять меры, чтобы разделить образующиеся электроны и дырки и сохранять их в течение необходимого времеми. Ведь именно количество образованных фотоэлектронов несет информацию об интенсивности поглощенного света. Для этого и предназначены затвор и слой изолирующего диэлектрика. Предположим, что на затвор подан положительный потенциал. В этом случае под воздействием созданного электрического поля, проникающего сквозь диэлектрик в полупроводник, дырки, являющиеся основными носителями заряда, начнут сдвигаться в сторону от диэлектрика, то есть в глубь полупроводника. На границе полупроводника с диэлектриком образуется обедненная основными носителями, то есть дырками, область, причем размер этой области зависит от величины приложенного потенциала. Именно эта обедненная область и является «хранилищем» для фотоэлектронов. Действительно, если полупроводник подвергнуть воздействию света, то образующиеся электроны и дырки будут двигаться в противоположных направлениях - дырки в глубь полупроводника, а электроны к обедненному слою. Так как в этом слое нет дырок, то электроны будут сохраняться там без процесса рекомбинации в течение требуемого времени. Естественно, что процесс накопления электронов не может происходить бесконечно. По мере увеличения количества электронов между ними и положительно заряженными дырками возникает наведенное электрическое поле, направленное противоположно полю, создаваемому затвором. В результате поле внутри полупроводника уменьшается до нуля, после чего процесс пространственного разделения дырок и электронов становится невозможным. Как следствие - образование электронно-дырочной пары сопровождается ее рекомбинацией, то есть число «информационных» электронов в обедненном слое перестает увеличиваться. В этом случае можно говорить о переполнении емкости сенсора.

    Рассмотренный нами сенсор способен выполнять две важные задачи - преобразовывать фотоны в электроны и накапливать их. Осталось решить задачу передачи этих информационных электронов в соответствующие блоки преобразования, то есть задачу съема информации.

    Представим себе не один, а несколько близко расположенных затворов на поверхности одного и того же диэлектрика (рис. 2). Пусть в результате фотогенерации под одним из затворов накоплены электроны. Если на соседний затвор подать более высокий положительный потенциал, то электроны начнут перетекать в область более сильного поля, то есть перемещаться от одного затвора к другому. Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то, подавая на них соответствующие управляющие напряжения, можно перемещать локализованный зарядовый пакет вдоль такой структуры. Именно на этом простом принципе и основаны приборы с зарядовой связью.

    Замечательное свойство ПЗС состоит в том, что для перемещения накопленного заряда достаточно всего трех типов затворов - одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причем одноименные затворы таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3). Это и есть простейший трехфазный регистр сдвига на ПЗС.

    До сих пор мы рассматривали ПЗС-сенсор только в одной плоскости - вдоль бокового разреза. Вне поля нашего зрения остался механизм удержания электронов в поперечном направлении, при котором затвор подобен длинной полоске. Учитывая, что освещение полупроводника неоднородно в пределах такой полоски, скорость образования электронов под воздействием света будет меняться по длине затвора. Если не принять мер по локализации электронов вблизи области их образования, то в результате диффузии концентрация электронов выравняется и информация об изменении интенсивности света в продольном направлении будет утеряна. Естественно, можно было бы сделать размер затвора одинаковым как в продольном, так и поперечном направлении, но это потребовало бы изготовления слишком большого числа затворов на ПЗС-матрице. Поэтому для локализации образующихся электронов в продольном направлении используют так называемые стоп-каналы (рис. 4), представляющие собой узкую полоску полупроводника с повышенным содержанием легирующей примеси. Чем больше концентрация примеси, тем больше дырок образуется внутри такого проводника (каждый атом примеси приводит к образованию дырки). Но от концентрации дырок зависит, при каком конкретно напряжении на затворе под ним образуется обедненная область. Интуитивно понятно, что чем больше концентрация дырок в полупроводнике, тем труднее их отогнать вглубь.

    Рассмотренная нами структура ПЗС-матрицы носит название ПЗС с поверхностным каналом передачи, так как канал, по которому передается накопленный заряд, находится на поверхности полупроводника. Поверхностный способ передачи имеет ряд существенных недостатков, связанных со свойствами границы полупроводника. Дело в том, что ограничение полупроводника в пространстве нарушает идеальную симметрию его кристаллической решетки со всеми вытекающими отсюда последствиями. Не вникая в тонкости физики твердого тела, заметим, что подобное ограничение приводит к образованию энергетических ловушек для электронов. В результате накопленные под воздействием света электроны могут захватываться этими ловушками, вместо того чтобы передаваться от одного затвора к другому. Помимо прочего такие ловушки могут непредсказуемо высвобождать электроны, причем не всегда, когда это действительно нужно. Получается, что полупроводник начинает «шуметь» - иначе говоря, количество накопленных под затвором электронов не будет точно соответствовать интенсивности поглощенного излучения. Избежать подобных явлений можно, но для этого сам канал переноса нужно отодвинуть в глубь проводника. Такое решение было реализовано специалистами фирмы Philips в 1972 году. Идея заключалась в том, что в поверхностной области полупроводника p-типа создавался тонкий слой полупроводника n-типа, то есть полупроводника, в котором основными носителями заряда являются электроны (рис. 5).

    Хорошо известно, что контакт двух полупроводников с различными типами проводимости приводит к образованию обедненного слоя на границе перехода. Происходит это за счет диффузии дырок и электронов во взаимно противоположных направлениях и их рекомбинации. Подача положительного потенциала на затвор увеличивает размер обедненной области. Характерно, что теперь сама обедненная область, или емкость для фотоэлектронов, находится не на поверхности, а следовательно, отсутствуют и поверхностные ловушки для электронов. Такой канал переноса называется скрытым, и все современные ПЗС изготавливаются именно со скрытым каналом переноса.

    Рассмотренные нами основные принципы функционирования ПЗС-сенсора используются для построения различных по архитектуре ПЗС-матриц. Конструктивно можно выделить две основные схемы матриц: с покадровым переносом и с межстрочным переносом.

    В матрице с покадровым переносом имеются две равнозначные секции с одинаковым числом строк: накопления и хранения. Каждая строка в этих секциях образована тремя затворами (передающий, принимающий и изолирующий). Кроме того, как уже отмечалось выше, все строки разделены множеством стоп-каналов, формирующих ячейки накопления в горизонтальном направлении. Таким образом, наименьший структурный элемент ПЗС-матрицы (пиксел) создается из трех горизонтальных затворов и двух вертикальных стоп-каналов (рис. 6).

    За время экспозиции в секции накопления образуются фотоэлектроны. После этого тактовые импульсы, подаваемые на затворы, переносят накопленные заряды из секции накопления в затененную секцию хранения, то есть фактически происходит передача всего кадра целиком. Поэтому такая архитектура и получила название ПЗС с покадровым переносом. После переноса секция накопления очищается и может повторно накапливать заряды, в то время как из секции памяти заряды поступают в горизонтальный регистр считывания. Структура горизонтального регистра аналогична структуре ПЗС-сенсора - те же три затвора для переноса заряда. Каждый элемент горизонтального регистра имеет зарядовую связь с соответствующим столбцом секции памяти, и за каждый тактовый импульс из секции накопления в регистр считывания поступает вся строка целиком, которая после этого передается в выходной усилитель для дальнейшей обработки.

    Рассмотренная схема ПЗС-матрицы имеет одно несомненное достоинство - высокий коэффициент заполнения (fill factor). Этим термином принято называть отношение фоточувствительной площади матрицы к ее общей площади. У матриц с покадровым переносом коэффициент заполнения достигает практически 100%. Такая особенность позволяет создавать на их основе очень чувствительные приборы.

    Кроме рассмотренного преимущества матрицы с покадровым переносом обладают и рядом недостатков. Прежде всего отметим, что сам процесс переноса не может осуществляться мгновенно. Именно это обстоятельство приводит к ряду негативных явлений. В процессе переноса заряда из секции накопления в секцию хранения первая остается освещенной и в ней продолжается процесс накопления фотоэлектронов. Это приводит к тому, что яркие участки изображения успевают внести свой вклад в чужой зарядовый пакет даже за то короткое время, в течение которого он проходит через них. В результате на кадре появляются характерные искажения в виде вертикальных полос, простирающихся через весь кадр от ярких участков изображения. Конечно, для борьбы с подобными явлениями можно применять различные ухищрения, однако наиболее радикальным способом является разделение секции накопления и секции переноса, с тем чтобы перенос протекал в затененной области. Матрицы такой архитектуры получили название ПЗС с межстрочным переносом (рис. 7).

    В отличие от описанной ранее матрицы с покадровым переносом, в качестве элементов накопления заряда здесь выступают фотодиоды (более подробно фотодиоды будут рассмотрены позже). Заряды, накопляемые фотодиодами, передаются в затененные ПЗС-элементы, которые осуществляют дальнейший перенос заряда. Обратим внимание, что перенос всего кадра от фотодиодов в вертикальные ПЗС-регистры переноса происходит за один такт. Возникает закономерный вопрос: почему такая архитектура получила название межстрочного переноса (встречается также термин «чересстрочный перенос»)? Чтобы разобраться в происхождении названия межстрочного, а также и покадрового переноса, вспомним основной принцип вывода изображения на экран формирования видеосигнала. Кадровый сигнал состоит из сигналов строк, разделенных межстрочным промежутком, то есть временем, необходимым для того, чтобы электронный луч, сканирующий по экрану, успел переместиться от конца одной строки к началу следующей. Имеются также межкадровые промежутки - время, необходимое для перемещения луча от конца последней строки к началу первой строки (переход на новый кадр).

    Если вспомнить архитектуру ПЗС-матрицы с межкадровым переносом, то становится понятно, что перенос кадра из секции накопления в секцию хранения происходит во время межкадрового промежутка видеосигнала. Это и понятно, так как для переноса всего кадра потребуется значительный интервал времени. В архитектуре с межстрочным переносом передача кадра происходит за один такт, и для этого достаточно небольшого промежутка времени. Далее изображение поступает в горизонтальный регистр сдвига, причем передача происходит по строкам во время межстрочных интервалов видеосигнала.

    Помимо двух рассмотренных типов ПЗС-матриц существуют и иные схемы. Например, схема, объединяющая межкадровый и межстрочный механизм (строчно-кадровый перенос), получается при добавлении к ПЗС-матрице межстрочного переноса секции хранения. При этом перенос кадра от фоточувствительных элементов происходит за один такт во время межстрочного интервала, а во время межкадрового интервала кадр передается в секцию хранения (межкадровый перенос); из секции хранения кадр передается в горизонтальный регистр сдвига во время межстрочных интервалов (межкадровый перенос).

    В последнее время получили распространение так называемые супер-ПЗС (Super CCD), использующие оригинальную сотовую архитектуру, которую образуют восьмиугольные пикселы. За счет этого увеличивается рабочая поверхность кремния и повышается плотность пикселов (количество пикселов ПЗС). Кроме того, восьмиугольная форма пикселов увеличивает площадь светочувствительной поверхности.

    КМОП-сенсоры

    Принципиально другим типом сенсора является так называемый КМОП-сенсор (КМОП - комплиментарный металл-оксид-полупроводник; в англоязычной терминологии - CMOS).

    Внутренняя архитектура КМОП-сенсоров может быть различной. Так, в качестве фоточувствительного элемента могут выступать фотодиоды, фототранзисторы или фотовентили. Независимо от типа фоточувствительного элемента неизменным остается принцип разделения дырок и электронов, получаемых в процессе фотогенерации. Рассмотрим наиболее простой тип фотодиода, на примере которого легко понять принцип действия всех фотоэлементов.

    Простейший фотодиод представляет собой контакт полупроводников n- и p-типов. На границе контакта этих полупроводников образуется обедненная область, то есть слой без дырок и электронов. Такая область формируется в результате диффузии основных носителей зарядов во взаимно противоположных направлениях. Дырки движутся из p-полупроводника (то есть из области, где их находится в избытке) в n-полупроводник (то есть в область, где их концентрация мала), а электроны движутся в противоположном направлении, то есть из n-полупроводника в p-полупроводник. В результате такой рекомбинации дырки и электроны исчезают и создается обедненная область. Кроме того, на границах обедненной области оголяются ионы примеси, причем в n-области ионы примеси имеют положительный заряд, а в p-области - отрицательный. Эти заряды, распределенные по границе обедненной области, образуют электрическое поле, подобное тому, что создается в плоском конденсаторе, состоящем из двух пластин. Именно это поле выполняет функцию пространственного разделения дырок и электронов, образующихся в процессе фотогенерации. Наличие такого локального поля (его также называют потенциальным барьером) является принципиальным моментом в любом фоточувствительном сенсоре (не только в фотодиоде).

    Предположим, что фотодиод освещается светом, причем свет падает на n-полупроводник, а p-n-переход перпендикулярен лучам света (рис. 8). Фотоэлектроны и фотодырки будут диффундировать в глубь кристалла, и некоторая их доля, не успевшая рекомбинировать, достигнет поверхности p-n-перехода. Однако для электронов существующее электрическое поле является непреодолимым препятствием - потенциальным барьером, поэтому электроны не смогут преодолеть p-n-переход. Дырки же, напротив, ускоряются электрическим полем и проникают в p-область. В результате пространственного разделения дырок и электронов n-область заряжается отрицательно (избыток фотоэлектронов), а p-область - положительно (избыток фотодырок).

    Основное отличие КМОП-сенсоров от ПЗС-сенсоров заключается не в способе накопления заряда, а в способе его дальнейшего переноса. Технология КМОП, в отличие от ПЗС, позволяет осуществлять большее количество операций прямо на кристалле, на котором расположена фоточувствительная матрица. Кроме высвобождения электронов и их передачи, КМОП-сенсоры могут также обрабатывать изображения, выделять контуры изображения, уменьшать помехи и производить аналого-цифровые преобразования. Более того, имеется возможность создавать программируемые КМОП-сенсоры, следовательно, можно получить очень гибкое многофункциональное устройство.

    Столь широкий набор функций, выполняемых одной микросхемой, - основное преимущество технологии КМОП над ПЗС. При этом сокращается количество необходимых внешних компонентов. Использование в цифровой камере КМОП-сенсора позволяет устанавливать на освободившееся место другие чипы - например, цифровые сигнальные процессоры (DSP) и аналого-цифровые преобразователи.

    Бурное развитие КМОП-технологий началось в 1993 году, когда были созданы активные пиксельные сенсоры. При этой технологии у каждого пиксела имеется свой считывающий транзисторный усилитель, что и позволяет преобразовывать заряд в напряжение непосредственно на пикселе. Кроме того, появилась возможность для произвольного доступа к каждому пикселу сенсора (подобно тому, как работает оперативная память с произвольным доступом). Считывание заряда с активных пикселов КМОП-сенсора производится по параллельной схеме (рис. 9), что позволяет считывать сигнал с каждого пиксела или с колонки пикселов напрямую. Произвольный доступ позволяет КМОП-сенсору считывать не только всю матрицу целиком, но и выборочные области (метод оконного считывания).

    Несмотря на кажущиеся преимущества КМОП-матриц перед ПЗС (основным из которых является более низкая цена), они обладают и рядом недостатков. Наличие дополнительных схем на кристалле КМОП-матрицы приводит к появлению ряда помех, таких как транзисторные и диодные рассеивания, а также эффект остаточного заряда, то есть КМОП-матрицы на сегодняшний день являются более «шумными». Поэтому в профессиональных цифровых камерах в ближайшее время будут использовать качественные ПЗС-матрицы, а КМОП-сенсоры осваивают рынок более дешевых устройств, к которому, в частности, относятся Web-камеры.

    Как получается цвет

    Рассмотренные выше фоточувствительные сенсоры способны реагировать лишь на интенсивность поглощаемого света - чем выше интенсивность, тем больший заряд накапливается. Возникает закономерный вопрос: как же получается цветное изображение?

    Чтобы камера могла различать цвета, непосредственно на активный пиксел накладывается массив цветных фильтров (CFA, color filter arrays). Принцип действия цветного фильтра очень прост: он пропускает свет только определенного цвета (иначе говоря, только свет с определенной длиной волны). Но сколько же таких фильтров потребуется, если количество различных цветовых оттенков практически не ограниченно? Оказывается, любой цветовой оттенок можно получить смешиванием в определенных пропорциях нескольких основных (базовых) цветов. В наиболее популярной аддитивной модели RGB (Red, Green, Blue) таких цвета три: красный, зеленый и синий. Значит, и цветных фильтров потребуется всего три. Отметим, что цветовая модель RGB не единственная, но в подавляющем большинстве цифровых Web-камер используется именно она.

    Наиболее популярными являются массивы фильтров цветовой модели Байера (Bayer pattern). В этой системе красные, зеленые и синие фильтры расположены в шахматном порядке, а количество зеленых фильтров в два раза больше, чем красных или синих. Порядок расположения таков, что красные и синие фильтры расположены между зелеными (рис. 10).

    Такое соотношение зеленых, красных и синих фильтров объясняется особенностями зрительного восприятия человека: наши глаза более чувствительны к зеленому цвету.

    В ПЗС-камерах совмещение трех цветовых каналов производится в устройстве формирования изображения уже после преобразования сигнала из аналогового вида в цифровой. В КМОП-сенсорах это совмещение может происходить и непосредственно в чипе. В любом случае первичные цвета каждого фильтра математически интерполируются с учетом цвета соседних фильтров. Следовательно, для того чтобы получить истинный цвет пиксела изображения, необходимо знать не только интенсивность света, прошедшего через светофильтр этого пиксела, но и значения интенсивностей света, прошедшего через светофильтры окружающих пикселов.

    Как уже отмечалось, в цветовой модели RGB используется три основных цвета, с помощью которых можно получить любой оттенок видимого спектра. сколько же всего оттенков позволяют различать цифровые камеры? Максимальное количество различных цветовых оттенков определяется глубиной цвета, которая, в свою очередь, определяется количеством битов, используемых для кодирования цвета. В популярной модели RGB 24 с глубиной цвета 24 бита для каждого цвета отводится по 8 битов. С помощью 8 битов можно задать 256 различных цветовых оттенков соответственно красного, зеленого и синего цветов. Каждому оттенку присваивается значение от 0 до 255. К примеру, красный цвет может принимать 256 градаций: от чисто красного (255) до черного (0). Максимальное значение кода соответствует чистому цвету, а код каждого цвета принято располагать в следующем порядке: красный, зеленый и синий. Например, код чистого красного цвета записывается в виде (255, 0, 0), код зеленого цвета - (0, 255, 0), а код синего цвета - (0, 0, 255). Желтый цвет можно получить смешением красного и зеленого, и его код записывается в виде (255, 255, 0).

    Кроме модели RGB широкое применение нашли также модели YUV и YСrCb, которые похожи друг на друга и основаны на разделении сигналов яркости и цветности. Сигнал Y - это сигнал яркости, который определяется смешением красного, зеленого и синего цветов. Сигналы U и V (Cr, Cb) являются цветоразностными. Так, сигнал U близок к разности между синими и желтыми компонентами цветного изображения, а сигнал V близок к разности между красными и зелеными компонентами цветного изображения.

    Основное достоинство модели YUV (YCrCb) заключается в том, что этот метод кодирования хотя и более сложен, чем RGB, однако требует меньшей полосы пропускания. Дело в том, что чувствительность человеческого глаза к яркостному Y-компоненту и цветоразностным компонентам неодинакова, поэтому вполне допустимым представляется выполнение этого преобразования с прореживанием (интерливингом) цветоразностных компонентов, когда для группы из четырех соседних пикселов (2×2) вычисляются Y-компоненты, а цветоразностные компоненты используются общие (так называемая схема 4:1:1). Нетрудно подсчитать, что уже схема 4:1:1 позволяет сократить выходной поток вдвое (вместо 12 байтов для четырех соседних пикселов достаточно шести). При кодировании по схеме YUV 4:2:2 сигнал яркости передается для каждой точки, а цветоразностные сигналы U и V - только для каждой второй точки в строке.

    Как работают цифровые

    Web-камеры

    ринцип работы всех типов цифровых камер примерно одинаков. Рассмотрим типичную схему наиболее простой Web-камеры, основное отличие которой от других типов камер - наличие USB-интерфейса для подключения к компьютеру.

    Помимо оптической системы (объектива) и светочувствительного ПЗС- или КМОП-сенсора обязательным является наличие аналого-цифрового преобразователя (АЦП), который преобразует аналоговые сигналы светочувствительного сенсора в цифровой код. Кроме того, необходима и система формирования цветного изображения. Еще одним важным элементом камеры является схема, отвечающая за компрессию данных и подготовку к передаче в нужном формате. К примеру, в рассматриваемой Web-камере видеоданные передаются в компьютер по интерфейсу USB, поэтому на ее выходе должен наличествовать контроллер USB-интерфейса. Структурная схема цифровой камеры изображена на рис. 11 .

    Аналого-цифровой преобразователь предназначен для дискретизации непрерывного аналогового сигнала и характеризуется частотой отсчетов, определяющих промежутки времени, через которые производится замер аналогового сигнала, а также своей разрядностью. Разрядность АЦП - это количество битов, используемых для представления каждого отсчета сигнала. Например, если используется 8-разрядный АЦП, то для представления сигнала используется 8 битов, что позволяет различать 256 градаций исходного сигнала. При использовании 10-разрядного АЦП имеется возможность различать уже 1024 различных градаций аналогового сигнала.

    Из-за низкой пропускной способности USB 1.1 (всего 12 Мбит/с, из которых Web-камера использует не более 8 Мбит/с) перед передачей в компьютер данные необходимо сжимать. Например, при разрешении кадра 320×240 пикселов и глубине цвета 24 бита размер кадра в несжатом виде будет составлять 1,76 Мбит. При ширине полосы пропускания канала USB 8 Мбит/с максимальная скорость передачи несжатого сигнала составит всего 4,5 кадров в секунду, а для получения качественного видео необходима скорость передачи 24 или более кадров в секунду. Таким образом, становится понятно, что без аппаратного сжатия передаваемой информации нормальное функционирование камеры невозможно.

    В соответствии с технической документацией данная КМОП-матрица имеет разрешение 664×492 (326 688 пикселов) и может функционировать со скоростью до 30 кадров в секунду. Сенсор поддерживает как прогрессивный, так и строчной тип развертки и обеспечивает отношение «сигнал/шум» более 48 дБ.

    Как видно из блок-схемы, блок цветоформирования (аналоговый сигнальный процессор) имеет два канала - RGB и YСrCb, причем для модели YСrCb яркостный и цветоразностные сигналы вычисляются по формулам:

    Y = 0,59G + 0,31R + 0,11B,

    Cr = 0,713 × (R – Y),

    Cb = 0,564 × (B – Y).

    Аналоговые сигналы RGB и YCrCb, формируемые аналоговым сигнальным процессором, обрабатываются двумя 10-битными АЦП, каждый из которых работает на скорости 13,5 MSPS, что обеспечивает синхронизацию с пиксельной скоростью. После оцифровки данные поступают на цифровой преобразователь, формирующий видеоданные в 16-битном формате YUV 4:2:2 или 8-битном формате Y 4:0:0, которые направляются в выходной порт по 16-битной или 8-битной шине.

    Кроме того, рассматриваемый КМОП-сенсор обладает широким спектром возможностей по коррекции изображения: предусмотрены установка баланса белого цвета, управление экспозицией, гамма-коррекцией, цветовой коррекции и т.д. Управлять работой сенсора можно по интерфейсу SCCB (Serial Camera Control Bus).

    Микросхема OV511+, блок-схема которой показана на рис. 13 , представляет собой USB-контроллер.

    Контроллер позволяет передавать видеоданные по USB-шине со скоростью до 7,5 Мбит/с. Нетрудно подсчитать, что такая полоса пропускания не позволит передавать видеопоток с приемлемой скоростью без предварительного сжатия. Собственно, компрессия - это и есть основное назначение USB-контроллера. Обеспечивая необходимую компрессию в реальном времени вплоть до степени сжатия 8:1, контроллер позволяет передавать видеопоток со скоростью 10-15 кадров в секунду при разрешении 640×480 и со скоростью 30 кадров в секунду при разрешении 320×240 и меньшем.

    За компрессию данных отвечает блок OmniCE, реализующий фирменный алгоритм сжатия. OmniCE обеспечивает не только необходимую скорость видеопотока, но и быструю декомпрессию при минимальной загрузке центрального процессора (по крайней мере, по утверждению разработчиков). Степень сжатия, обеспечиваемая блоком OmniCE, варьируется от 4 до 8 в зависимости от требуемой скорости видеопотока.

    КомпьютерПресс 12"2001

    {lang: ‘ru’}

    Продолжаю начатый в предыдущей публикации разговор об устройстве .

    Одним из главных элементов цифрового фотоаппарата, отличающих его от фотоаппаратов пленочных является светочувствительный элемент, так называемый ЭОП или светочувствительная цифрового фотоаппарата . О матрицах фотоаппаратов уже говорилось , теперь же рассмотрим несколько подробнее устройство и принцип работы матрицы, хотя и достаточно поверхностно, чтобы не слишком утомлять читателя.

    В настоящее время большинство цифровых фотоаппаратов оснащены ПЗС-матрицами.

    ПЗС-матрица. Устройство. Принцип работы.

    Рассмотрим в общих чертах устройство ПЗС- матрицы .

    Полупроводники, как известно, делятся на полупроводники n-типа и p-типа. В полупроводнике n-типа имеется избыток свободных электронов, а в полупроводнике p-типа избыток положительных зарядов, «дырок» (а следовательно недостаток электронов). На взаимодействии таких двух типов полупроводников и основана вся микроэлектроника.

    Так вот, элемент ПЗС-матрицы цифрового фотоаппарата устроен следующим образом. См. Рис.1:

    Рис.1

    Если не вдаваться в подробности, то ПЗС-элемент или прибор с зарядовой связью, в английской транскрипции: charge-coupled-device – CCD, представляет собой МДП (металл-диэлектрик-полупроводник) конденсатор. Он состоит из подложки p-типа - слоя кремния, изолятора из двуокиси кремния и пластин-электродов. При подаче на один из электродов положительного потенциала, под ним образуется зона обедненная основными носителями - дырками, т. к. они оттесняются электрическим полем от электрода вглубь подложки. Таким образом под данным электродом образуется потенциальная яма, т. е. энергетическая зона благоприятная для перемещения в нее неосновных носителей – электронов. В этой яме накапливается отрицательный заряд. Он может храниться в данной яме достаточно долго из-за отсутствия в ней дырок и, следовательно, причин для рекомбинации электронов.

    В светочувствительных матрицах электродами являются пленки поликристаллического кремния, прозрачного в видимой области спектра.

    Фотоны падающего на матрицу света попадают в кремниевую подложку, образуя в ней пару дырка-электрон. Дырки, как сказано выше смещаются вглубь подложки, а электроны накапливаются в потенциальной яме.

    Накопившийся заряд пропорционален количеству фотонов падающих на элемент, т. е. интенсивности светового потока. Таким образом на матрице создается зарядовый рельеф, соответствующий оптическому изображению.

    Перемещение зарядов в ПЗС-матрице.

    В каждом ПЗС-элементе имеется несколько электродов, на которые подаются разные потенциалы.

    При подаче на соседний электрод (см. рис. 3) потенциала, большего, чем на данном электроде, под ним образуется более глубокая потенциальная яма, в которую перемещается заряд из первой потенциальной ямы. Таким образом заряд может перемещаться из одной ПЗС-ячейки в другую. Показанный на рис.3 ПЗС-элемент называется трехфазным, бывают еще и 4-х фазные элементы.

    Рис.4. Схема работы трехфазного прибора с зарядовой связью – сдвигового регистра.

    Для преобразования зарядов в импульсы тока (фототока) используются последовательные регистры сдвига (см. рис.4). Такой регистр сдвига и является строкой ПЗС-элементов. Амплитуда импульсов тока пропорциональна величине передаваемого заряда, и пропорциональна,таким образом, падающему световому потоку. Последовательность импульсов тока, образующихся при считывании последовательности зарядов, затем подается на вход усилителя.

    Линейки близко расположенных друг к другу ПЗС-элементов объединяются в ПЗС-матрицу . Работа такой матрицы основывается на создании и передаче локального заряда в потенциальных ямах, создаваемых электрическим полем.

    Рис.5.

    Заряды всех ПЗС-элементов регистра синхронно перемещаются в соседние ПЗС-элементы. Заряд, который находился в последней ячейке, поступает на выход из регистра, а затем подается на вход усилителя.

    На вход последовательного регистра сдвига подаются заряды перпендикулярно расположенных регистров сдвига, которые в совокупности называются параллельным регистром сдвига. Параллельный и последовательный регистры сдвига и составляют ПЗС-матрицу (см. рис.4).

    Перпендикулярные к последовательному регистру сдвиговые регистры носят название столбцов.

    Перемещение зарядов параллельного регистра строго синхронизовано. Все заряды одной строки смещаются одновременно в соседнюю. Заряды последней строки попадают в последовательный регистр. Таким образом за один рабочий цикл строка зарядов из параллельного регистра попадает на вход последовательного, освобождая место для вновь образуемых зарядов.

    Работа последовательного и параллельного регистров синхронизуется тактовым генератором. В состав матрицы цифрового фотоаппарата также входит микросхема, подающая потенциалы на электроды переноса регистров и управляющая их работой.

    ЭОП такого типа носит название полнокадровой матрицы (full-frame CCD-matrix). Для его работы необходимо наличие светонепроницаемой крышки, которая сначала открывает ЭОП для экспонирования светом, затем, когда на него попало количество фотонов, необходимое для накопления достаточного заряда в элементах матрицы, закрывает его от света. Такая крышка является механическим затвором, как в пленочных фотоаппаратах. Отсутствие такого затвора приводит к тому, что при перемещении зарядов в сдвиговом регистре ячейки продолжают облучаться светом, добавляя к заряду каждого пиксела лишние электроны, не соответствующие световому потоку данной точки. Это приводит к «размазыванию» заряда, соответственно к искажению получаемого изображения.

    Фотоэлектрические преобразователи изображения на ПЗС делятся на два класса: линейные (одномерные) и матричные (двумерные). В линейных ФЭП фоточувствительные элементы расположены вдоль одной линии, обычно строки, и формируют одномерное изображение объекта. Такие однострочные ФЭП могут быть использованы при контроле за технологическими процессами производства, при специальном анализе и анализе оптической плотности макро- и микрообъектов. Однострочные ФЭП могут быть использованы и для получения двумерного изображения. В этом случае необходимо перемещение ФЭП или объекта в направлении, перпендикулярном направлению строчной развертки.

    Твердотельным аналогом передающей трубки с электронным сканированием по строке и кадру является матричный формирователь сигнала изображения. Он представляет собой двухкоординатный массив светочувствительных элементов, в котором осуществляется электронное сканирование по координатам х и y. При проектировании такой двухкоординатной матрицы решается вопрос организации ее считывания.

    Для наиболее полного использования достоинств ПЗС зарядовые пакеты должны перемещаться к одному выходному устройству, а порядок считывания информации - обычно соответствовать принятому телевизионному стандарту. При выборе способа организации считывания необходимо обеспечить минимальное смазывание изображения, возникающее при переносе накопленных зарядовых пакетов через освещенные области прибора. Поэтому в современных матричных ФЭП на ПЗС области накопления заряда и его переноса разделяют.

    По способу организации считывающие матрицы ПЗС делятся на матрицы с кадровым переносом заряда (КП), матрицы со строчным переносом заряда (СП) и матрицы со строчно-кадровым переносом заряда (СКП).

    Матрицы ПЗС КП (см. рис. 8.12) включают в себя секцию накопления - фотоприемную секцию, секцию хранения или памяти, которая защищена от света и равна по площади секции накопления, и один или несколько параллельных выходных сдвиговых регистров.

    Рис. 8.12. Способ организации покадрового считывания

    Во время активной части поля происходит накопление зарядовых пакетов в фотоприемной секции. Во время кадрового гасящего импульса, накопленные заряды всех строк поля последовательно переносятся в защищенную от света секцию хранения. Далее во время накопления в фотоприемной секции следующего кадра информация из секции хранения построчно передается в секцию переноса заряда - сдвиговый регистр. Сдвиг строк в секцию переноса осуществляется во время обратного хода горизонтальной развертки. Затем зарядовые пакеты строки поэлементно выводятся сдвиговым регистром к выходному устройству, преобразующему заряды в сигнал изображения. После считывания всей видеоинформации из секции хранения начинается перенос следующего кадра.


    Одним из основных достоинств покадрового считывания является уменьшение эффекта смазывания изображения, так как зарядовая информация считывается из защищенной от света секции хранения и дополнительной засветки при сканировании не происходит. При покадровой организации легко осуществляется чересстрочное разложение изображения, также проста электродная структура, что позволяет компактно расположить ячейки матрицы. Принцип покадрового переноса удобен для освещения матрицы со стороны подложек, что позволяет удвоить квантовую эффективность прибора и получить более равномерную характеристику спектральной чувствительности.

    Таким образом, в матрице с покадровым считыванием перенос зарядовых пакетов к выходному устройству осуществляется в три приема: 1) перенос из секции накопления в секцию памяти; 2) перенос из секции памяти в сдвиговый регистр; 3) перенос из сдвигового регистра в выходное устройство. Нетрудно видеть, что число переносов для разных элементов кадра будет различным. Максимальным оно будет для первого элемента верхней строки и минимальным - для последнего элемента нижней. Максимальное число переносов для одного зарядового пакета нетрудно подсчитать. Для покадровой организации считывания по трехтактной схеме сдвига число переносов N max = 2 х 3z + 2n , где z - число строк; п - число элементов в строке. В приведенном равенстве первый член учитывает число переносов по кадру, а второй - число переносов вдоль строки.

    Учитывая, что зарядовые пакеты переносятся не полностью, так как, во-первых, часть заряда теряется в ловушках, существующих на границе кремния с окислом, а во-вторых, при определенной скорости переноса часть заряда может отстать от пакета и появиться в следующем. Неэффективность переноса заряда ε накладывает определенные ограничения на скорость работы ПЗС и полное число переносов, которые можно совершить без существенного разрушения сигнала. Если ε - относительная величина и характеризует часть заряда, отставшую от пакета на один перенос, умножив ε на число переносов в приборе N , получим результирующую неэффективность переноса N ε всего прибора.

    Недостатком матриц ПЗС КП является неполное устранение смаза изображения, которое проявляется в виде вертикальных тянущихся продолжений за очень яркими деталями. Смаз появляется из-за того, что при переносе накопленных зарядов из фотоприемной секции в секцию памяти свет продолжает попадать в фотоприемную секцию.

    Для уменьшения величины смаза изображения были разработаны матрицы со строчным переносом зарядов (см. рис. 8.13), в которых область накопления образована вертикальными столбцами светочувствительных элементов, между которыми помещены защищенные от света вертикальные сдвиговые регистры. В течение времени кадра в светочувствительных элементах накапливаются зарядовые пакеты. Во время гасящего кадрового импульса они одновременно переносятся в соседние ячейки вертикальных сдвиговых регистров. Во время накопления следующего кадра, зарядовые пакеты из вертикальных регистров одновременно сдвигаются в горизонтальный (выходной) регистр. Сдвиг по вертикальным регистрам на один элемент происходит во время обратного хода строчной развертки, а вывод зарядовых пакетов из горизонтальных регистров в выходное устройство - за время прямого хода строчной развертки. Полное освобождение вертикальных сдвиговых регистров от зарядов происходит за время кадра.


    Рис. 8.13. Матрица со строчным переносом зарядов

    Рис. 8.14. Матрица со строчно-кадровым переносом зарядов


    Для обеспечения чересстрочной развертки в матрице ПЗС СП заряды из светочувствительных ячеек в вертикальные регистры переносятся: в нечетных полях - из нечетных ячеек, а в четных полях - из четных ячеек.

    В трехматричных камерах вещательного назначения необходимо дальнейшее снижение уровня смаза изображения. Для обеспечения этого требования были разработаны гибридные матрицы ПЗС со строчно-кадровым переносом заряда (СКП). Матрицы ПЗС СКП (см. рис. 8.14 и 8.15) отличаются от матриц ПЗС СП (см. рис. 8.13) наличием в них дополнительной секции хранения зарядов на длительность поля.

    Рис. 8.15. Концепция строчно-кадрового переноса

    Поэтому частота переноса заряда из вертикальных ПЗС регистров в секцию хранения может быть выбрана в десятки раз больше частоты строк, используемой в матрицах ПЗС СП. Это позволяет во столько же раз уменьшить уровень смаза изображения. Недостатки матриц ПЗС СКП заключаются в относительной сложности изготовления и высокой стоимости производства.

    Основные недостатки матричных ПЗС СП – невозможность освещения со стороны подложки и неполное использование светового потока из-за того, что фотодиоды занимают не всю площадь кристалла фотоны, попадающие на экранированные от света вертикальные ПЗС-регистры, не создают зарядов. Вследствие этого существенно снижается чувствительность камер.

    Таким образом, уменьшение размеров светочувствительной площади в матрицах со строчным переносом косвенно ухудшает световую чувствительность матрицы. Эта проблема может быть разрешена очень просто (хотя технологически это очень сложно) – поверх каждого пикселя (фотодиода) помещается микролинза. Микролинза концентрирует весь падающий свет на маленькую область, на сам пиксель (фотодиод), собирает в него весь световой поток, и этим самым эффективно увеличивает минимальную освещенность фотодиода (см. рис. 8.16).

    Рис. 8.16,а. Сравнение традиционных схем с микролинзами

    Рис. 8.16,б. Структура ПЗС-матрицы с микролинзами (фотография сделана электронным микроскопом)

    Число фотодиодов в столбце матричного ПЗС выбирается равным числу строк в кадре. Чересстрочное разложение в матричных ПЗС со строчным переносом может быть реализовано различными способами. В простейшем случае в первом поле зарядовые пакеты из нечетных фотодиодов считываются в вертикальный ПЗС-регистр, а в четных фотодиодах накопление продолжается. Во втором поле считываются заряды, накопленные в четных фотодиодах. Размер светочувствительного элемента по вертикали оказывается равным размеру одного фотодиода. Центры соседних строк расположены на равном расстоянии друг от друга. Время накопления при таком считывании составляет в телевизионном режиме 40 мс – время кадра. Поэтому данный режим получил название режима накопления кадра. Столь большое время накопления приводит к искажениям при передаче подвижных объектов. Появляется зубчатость вертикальных границ при движении объектов по горизонтали. Для преодоления этого недостатка был разработан режим накопления поля.

    Световая характеристика матрицы ПЗС в рабочем диапазоне освещенности линейна (см. рис. 8.17). Точка 1 соответствует выходному

    сигналу в отсутствие освещения и определяет темновой ток, обусловленный в большой степени термогенерацией неосновных носителей. Точка 2 характеризует режим насыщения элемента матрицы, т.е. полное заполнение потенциальной ямы неосновными носителями. Глубина потенциальной ямы определяется конструктивными параметрами матрицы и потенциалом накопления, значение которого ограничено напряжением пробоя МОП-конденсатора.


    Рис. 8.17. Световая характеристика матрицы ПЗС

    Рис. 8.18. Спектральная характеристика матрицы ПЗС


    Спектральная чувствительность матричного формирователя (рис. 8.18 и 8.19) имеет подъем в длинноволновой области спектра и спад в области длин волн 0,4...0,5 мкм (кривая 1), который обусловлен сильным поглощением на этом участке спектра нанесенными на полупроводниковую подложку поликремниевыми электродами.

    Рис. 8.19. Спектральная чувствительность глаза и ПЗС-матрицы

    Для повышения чувствительности в этой области спектра в поликремниевых электродах вскрыты окна. Площадь окон составляет примерно 15... 20 % от площади фоточувствительной поверхности элемента. Это подняло чувствительность матрицы на длине волны λ = 0,4 мкм до 20 % (кривая 2), что позволило использовать матрицу в цветном телевидении. Разрешающая способность определяется числом элементов накопления в матрице ПЗС. Для систем телевидения высокой четкости разработаны матрицы ПЗС с числом элементов 1035x1920.

    Спектральная чувствительность ПЗС-матрицы зависит от типа кремниевой подложки, но общая характеристика является результатом фотоэффекта: более длинные волны глубже проникают в кремниевую структуру ПЗС. Имеется в виду красный и инфракрасный свет (рис. 8.19).

    Однако такое проникновение является вредным. Такие волны настолько сильны, что могут генерировать электронные носители в зонах, которые не должны подвергаться воздействию света. В результате в изображении пропадают мелкие детали, потому что заряд ячеек растекается по соседним, теряя при этом компоненты высокого разрешения и вызывая «эффект заплывания». Может быть затронута также и масковая зона (рис. 8.15), предназначенная лишь для временного хранения зарядов и не предназначенная для засвечивания, в результате чего могут, в значительной степени возрасти шумы и вертикальный ореол. Поэтому в усовершенствованных ПЗС-видеокамерах применяются специальные оптические инфракрасные отсекающие фильтры. Они монтируются сверху ПЗС-матрицы и ведут себя как оптические НЧ фильтры с частотой среды порядка 700 нм, вблизи красного цвета (рис. 8.20) .

    Рис. 8.20. Инфракрасный отсекающий фильтр изменяет характеристику спектральной чувствительности ПЗС-матрицы

    Однако в тех случаях, когда предполагается использовать видеокамеру (черно-белую) в условиях низкой освещенности или в систему входят источники инфракрасного освещения объектов, такие фильтры не используются (чтобы не ослаблять чувствительность камер).

    В цветных ПЗС-камерах, напротив, нужно использовать ИК-отсекающий фильтр. Типичная черно-белая ПЗС-матрица без инфракрасного фильтра может дать приемлемый уровень видеосигнала при освещенности мишени камеры в 0,01 лк. Та же камера с ИК-фильтром потребует освещенность в 10 раз большую. Но в этом случае верность цветопередачи является определяющим критерием.

    В последние годы в околокомпьютерной (и не только) прессе довольно часто встречаются восторженные обзоры, посвящённые очередному «технологическому чуду, призванному революционным образом повлиять на будущее цифровой фотографии»- это обобщённый вариант фразы, в той или иной форме встречающейся в каждой из подобного рода статей. Но что характерно- спустя всего год первоначальный ажиотаж постепенно сходит на «нет», а большинство производителей цифровой фототехники вместо «передовой разработки» предпочитают использовать проверенные решения.

    Рискну предположить, что причина такого развития событий довольно проста - достаточно обратить внимание на «гениальную простоту» того или иного решения. В самом деле, разрешения матрицы недостаточно? А давайте пикселы не столбцами и строками, а диагональными линиями располагать, а потом «повернём» программным путём «картинку» на 45 градусов- вот у нас разрешение сразу в два раза вырастет! Неважно, что таким образом повышается чёткость только строго вертикальных и горизонтальных линий, а наклонные и кривые (из которых и состоит реальное изображение) остаются без изменений. Главное, что эффект наблюдается, значит и громогласно заявить об этом можно.

    К сожалению, современный пользователь «избалован мегапикселями». Ему невдомёк, что каждый раз при увеличении разрешения разработчикам «классических» ПЗС-матриц приходится решать сложнейшую задачу по обеспечению приемлемого динамического диапазона и чувствительности сенсора. А вот «решения» вроде перехода с прямоугольной на октагональную форму пикселов рядовому фотолюбителю кажутся вполне понятными и обоснованными- ведь об этом так доступно написано в рекламных буклетах…

    Цель данной статьи - попытаться на самом простом уровне объяснить, от чего зависит качество изображения, получаемого на выходе с ПЗС-матрицы. При этом от качества оптики совершенно спокойно можно абстрагироваться- появление уже второй по счёту «зеркалки» стоимостью менее 1000 долларов (Nikon D 70) позволяет надеяться, что дальнейший рост разрешения сенсоров для камер приемлемой ценовой категории не будет ограничиваться «мыльничными» объективами.

    Внутренний фотоэффект

    Итак, сформированное объективом изображение попадает на ПЗС-матрицу, то есть лучи света падают на светочувствительную поверхность ПЗС-элементов, задача которых-преобразовать энергию фотонов в электрический заряд. Происходит это примерно следующим образом.

    Для фотона, упавшего на ПЗС-элемент, есть три варианта развития событий- он либо «срикошетирует» от поверхности, либо будет поглощён в толще полупроводника (материала матрицы), либо «пробьёт насквозь» её «рабочую зону». Очевидно, что от разработчиков требуется создать такой сенсор, в котором потери от «рикошета» и «прострела навылет» были бы минимизированы. Те же фотоны, которые были поглощены матрицей, образуют пару электрон-дырка, если произошло взаимодействие с атомом кристаллической решётки полупроводника, или же только фотон (либо дырку), если взаимодействие было с атомами донорных либо акцепторных примесей, а оба перечисленных явления называются внутренним фотоэффектом . Разумеется, внутренним фотоэффектом работа сенсора не ограничивается- необходимо сохранить «отнятые» у полупроводника носители заряда в специальном хранилище, а затем их считать.

    Элемент ПЗС-матрицы

    В общем виде конструкция ПЗС-элемента выглядит так: кремниевая подложка p - типа оснащается каналами из полупроводника n -типа. Над каналами создаются электроды из поликристаллического кремния с изолирующей прослойкой из оксида кремния. После подачи на такой электрод электрического потенциала, в обеднённой зоне под каналом n -типа создаётся потенциальная яма , назначение которой- хранить электроны. Фотон, проникающий в кремний, приводит к генерации электрона, который притягивается потенциальной ямой и остаётся в ней. Большее количество фотонов (яркий свет) обеспечивает больший заряд ямы. Затем надо считать значение этого заряда, именуемого также фототоком , и усилить его.

    Считывание фототоков ПЗС-элементов осуществляется так называемыми последовательными регистрами сдвига , которые преобразовывают строку зарядов на входе в серию импульсов на выходе. Данная серия представляет собой аналоговый сигнал, который в дальнейшем поступает на усилитель.

    Таким образом, при помощи регистра можно преобразовать в аналоговый сигнал заряды строки из ПЗС-элементов. Фактически, последовательный регистр сдвига в ПЗС-матрицах реализуется с помощью тех же самых ПЗС-элементов, объединённых в строку. Работа такого устройства базируется на способности приборов с зарядовой связью (именно это обозначает аббревиатура ПЗС) обмениваться зарядами своих потенциальных ям. Обмен осуществляется благодаря наличию специальных электродов переноса (transfer gate), расположенных между соседними ПЗС-элементами. При подаче на ближайший электрод повышенного потенциала заряд «перетекает» под него из потенциальной ямы. Между ПЗС-элементами могут располагаться от двух до четырёх электродов переноса, от их количества зависит «фазность» регистра сдвига, который может называться двухфазным, трёхфазным либо четырёхфазным.

    Подача потенциалов на электроды переноса синхронизирована таким образом, что перемещение зарядов потенциальных ям всех ПЗС-элементов регистра происходит одновременно. И за один цикл переноса ПЗС-элементы как бы «передают по цепочке» заряды слева направо (или же справа налево). Ну а оказавшийся «крайним» ПЗС-элемент отдаёт свой заряд устройству, расположенному на выходе регистра- то есть усилителю.

    В целом, последовательный регистр сдвига является устройством с параллельным входом и последовательным выходом. Поэтому после считывания всех зарядов из регистра есть возможность подать на его вход новую строку, затем следующую и таким образом сформировать непрерывный аналоговый сигнал на основе двумерного массива фототоков. В свою очередь, входной параллельный поток для последовательного регистра сдвига (то есть строки двумерного массива фототоков) обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая именуется параллельным регистром сдвига , а вся конструкция в целом как раз и является устройством, именуемым ПЗС-матрицей.

    «Вертикальные» последовательные регистры сдвига, составляющие параллельный, называются столбцами ПЗС-матрицы , а их работа полностью синхронизирована. Двумерный массив фототоков ПЗС-матрицы одновременно смещается вниз на одну строку, причём происходит это только после того, как заряды предыдущей строки из расположенного «в самом низу» последовательного регистра сдвига ушли на усилитель. До освобождения последовательного регистра параллельный вынужден простаивать. Ну а сама ПЗС-матрица для нормальной работы обязательно должна быть подключена к микросхеме (или их набору), подающей потенциалы на электроды как последовательного, так и параллельного регистров сдвига, а также синхронизирующей работу обоих регистров. Кроме того, нужен тактовый генератор.



    Полнокадровая матрица

    Данный тип сенсора является наиболее простым с конструктивной точки зрения и именуется полнокадровой ПЗС-матрицей (full-frame CCD - matrix). Помимо микросхем «обвязки», такой тип матриц нуждается также в механическом затворе, перекрывающем световой поток после окончания экспонирования. До полного закрытия затвора считывание зарядов начинать нельзя- при рабочем цикле параллельного регистра сдвига к фототоку каждого из его пикселов добавятся лишние электроны, вызванные попаданием фотонов на открытую поверхность ПЗС-матрицы. Данное явление называется «размазыванием» заряда в полнокадровой матрице (full - frame matrix smear).

    Таким образом, скорость считывания кадра в такой схеме ограничена скоростью работы как параллельного, так и последовательного регистров сдвига. Также очевидно, что необходимо перекрывать световой поток, идущий с объектива, до завершения процесса считывания, поэтому интервал между экспонированием тоже зависит от скорости считывания.

    Существует усовершенствованный вариант полнокадровой матрицы, в котором заряды параллельного регистра не поступают построчно на вход последовательного, а «складируются» в буферном параллельном регистре. Данный регистр расположен под основным параллельным регистром сдвига, фототоки построчно перемещаются в буферный регистр и уже из него поступают на вход последовательного регистра сдвига. Поверхность буферного регистра покрыта непрозрачной (чаще металлической) панелью, а вся система получила название матрицы с буферизацией кадра (frame - transfer CCD).


    Матрица с буферизацией кадра

    В данной схеме потенциальные ямы основного параллельного регистра сдвига «опорожняются» заметно быстрее, так как при переносе строк в буфер нет необходимости для каждой строки ожидать полный цикл последовательного регистра. Поэтому интервал между экспонированием сокращается, правда при этом также падает скорость считывания- строке приходится «путешествовать» на вдвое большее расстояние. Таким образом, интервал между экспонированием сокращается только для двух кадров, хотя стоимость устройства за счёт буферного регистра заметно возрастает. Однако наиболее заметным недостатком матриц с буферизацией кадра является удлинившийся «маршрут» фототоков, который негативно сказывается на сохранности их величин. И в любом случае между кадрами должен срабатывать механический затвор, так что о непрерывном видеосигнале говорить не приходится.

    Матрицы с буферизацией столбцов

    Специально для видеотехники был разработан новый тип матриц, в котором интервал между экспонированием был минимизирован не для пары кадров, а для непрерывного потока. Разумеется, для обеспечения этой непрерывности пришлось предусмотреть отказ от механического затвора.

    Фактически данная схема, получившая наименование матрицы с буферизацией столбцов (interline CCD -matrix), в чём-то сходна с системами с буферизацией кадра- в ней также используется буферный параллельный регистр сдвига, ПЗС-элементы которого скрыты под непрозрачным покрытием. Однако буфер этот не располагается единым блоком под основным параллельным регистром- его столбцы «перетасованы» между столбцами основного регистра. В результате рядом с каждым столбцом основного регистра находится столбец буфера, а сразу же после экспонирования фототоки перемещаются не «сверху вниз», а «слева направо» (или «справа налево») и всего за один рабочий цикл попадают в буферный регистр, целиком и полностью освобождая потенциальные ямы для следующего экспонирования.

    Попавшие в буферный регистр заряды в обычном порядке считываются через последовательный регистр сдвига, то есть «сверху вниз». Поскольку сброс фототоков в буферный регистр происходит всего за один цикл, даже при отсутствии механического затвора не наблюдается ничего похожего на «размазывание» заряда в полнокадровой матрице. А вот время экспонирования для каждого кадра в большинстве случаев по продолжительности соответствует интервалу, затрачиваемому на полное считывание буферного параллельного регистра. Благодаря всему этому появляется возможность создать видеосигнал с высокой частотой кадров- не менее 30кадров секунду.



    Матрица с буферизацией столбцов

    Зачастую в отечественной литературе матрицы с буферизацией столбцов ошибочно именуют «чересстрочными». Вызвано это, наверное, тем, что английские наименования «interline » (буферизация строк) и «interlaced» (чересстрочная развёртка) звучат очень похоже. На деле же при считывании за один такт всех строк можно говорить о матрице с прогрессивной разверткой (progressive scan), а когда за первый такт считываются нечётные строки, а за второй- чётные (или наоборот), речь идёт о матрице с чересстрочной разверткой (interlace scan).

    Хотя фототоки основного параллельного регистра сдвига сразу же попадают в буферный регистр, который не подвергается «фотонной бомбардировке», «размазывание» заряда в матрицах с буферизацией столбцов (smear) также происходит. Вызвано это частичным перетеканием электронов из потенциальной ямы «светочувствительного» ПЗС-элемента в потенциальную яму «буферного», особенно часто это происходит при близких к максимальному уровнях заряда, когда освещённость пикселя очень высока. В результате на снимке вверх и вниз от этой яркой точки протягивается светлая полоса, портящая кадр. Для борьбы с этим неприятным эффектом при проектировании сенсора «светочувствительный» и буферный столбцы располагают на большей дистанции друг от друга. Разумеется, это усложняет обмен зарядом, а также увеличивает временной интервал данной операции, однако вред, который наносит изображению «размазывание», не оставляет разработчикам выбора.

    Как уже было сказано ранее, для обеспечения видеосигнала необходимо, чтобы сенсор не требовал перекрытия светового потока между экспозициями, так как механический затвор в таких условиях работы (около 30 срабатываний в секунду) может быстро выйти из строя. К счастью, благодаря буферным строкам есть возможность реализовать электронный затвор , который, во-первых, позволяет при необходимости обойтись без механического затвора, а во-вторых, обеспечивает сверхмалые (до 1/10000секунды) значения выдержки, особенно критичные для съемки быстротекущих процессов (спорт, природа ит.д.). Однако электронный затвор требует также, чтобы матрица обладала системой удаления избыточного заряда потенциальной ямы, впрочем, обо всём будет рассказано по порядку.

    За всё приходится платить, и за возможность сформировать видеосигнал- тоже. Буферные регистры сдвига «съедают» значительную часть площади матрицы, в результате каждому пикселю достаётся лишь 30% светочувствительной области от его общей поверхности, в то время как у пикселя полнокадровой матрицы эта область составляет 70%. Именно поэтому в большинстве современных ПЗС_матриц поверх каждого пиксела располагается микролинза . Такое простейшее оптическое устройство покрывает большую часть площади ПЗС-элемента и собирает всю падающую на эту часть долю фотонов в концентрированный световой поток, который, в свою очередь, направлен на довольно компактную светочувствительную область пиксела.



    Микролинзы

    Поскольку с помощью микролинз удаётся гораздо эффективнее регистрировать падающий на сенсор световой поток, со временем этими устройствами стали снабжать не только системы с буферизацией столбцов, но и полнокадровые матрицы. Впрочем, микролинзы тоже нельзя назвать «решением без недостатков».

    Являясь оптическим устройством, микролинзы в той или иной мере искажают регистрируемое изображение чаще всего это выражается в потере чёткости у мельчайших деталей кадра- их края становятся слегка размытыми. С другой стороны, такое нерезкое изображение отнюдь не всегда нежелательно - в ряде случаев изображение, формируемое объективом, содержит линии, размер и частота размещения которых близки к габаритам ПЗС-элемента и межпиксельному расстоянию матрицы. В этом случае в кадре зачастую наблюдается ступенчатость (aliasing)- назначение пикселу определённого цвета, вне зависимости от того, закрыт ли он деталью изображения целиком или только его часть. В итоге линии объекта на снимке получаются рваными, с зубчатыми краями. Для решения этой проблемы в камерах с матрицами без микролинз используется дорогостоящий фильтр защиты от наложения спектров (anti -aliasing filter), а сенсор с микролинзами в таком фильтре не нуждается. Впрочем, в любом случае за это приходится расплачиваться некоторым снижением разрешающей способности сенсора.

    Если объект съёмки освещён недостаточно хорошо, рекомендуется максимально открыть диафрагму. Однако при этом резко возрастает процент лучей, падающих на поверхность матрицы под крутым углом. Микролинзы же отсекают значительную долю таких лучей, поэтому эффективность поглощения света матрицей (то, ради чего и открывали диафрагму) сильно сокращается. Хотя надо отметить, что падающие под крутым углом лучи тоже являются источником проблем- входя в кремний одного пиксела, фотон с большой длиной волны, обладающий высокой проникающей способностью, может поглотиться материалом другого элемента матрицы, что в итоге приведёт к искажению изображения. Для решения этой проблемы поверхность матрицы покрывается непрозрачной (например, металлической) «решёткой», в вырезах которой остаются только светочувствительные зоны пикселов.

    Исторически сложилось так, что полнокадровые сенсоры применяются в основном в студийной технике, а матрицы с буферизацией столбцов- в любительской. В профессиональных камерах встречаются сенсоры обоих типов.

    В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, чувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной чувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (back -illuminated matrix). В сенсорах такого типа регистрируемый свет падает на подложку, а чтобы обеспечить требуемый внутренний фотоэффект подложка шлифовалась до толщины 10–15 микрометров. Данная стадия обработки сильно удорожала стоимость матрицы, кроме того, устройства получались очень хрупкими и требовали повышенной осторожности при сборке и эксплуатации.



    Матрица с обратной засветкой

    Очевидно, что при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл, поэтому матрицы с обратной засветкой применяются по большей части в астрономической фотографии.

    Чувствительность

    Одной из важнейших характеристик регистрирующего устройства, будь то фотоплёнка или ПЗС-матрица, является чувствительность - способность определенным образом реагировать на оптическое излучение. Чем выше чувствительность, тем меньшее количество света требуется для реакции регистрирующего устройства. Для обозначения чувствительности применялись различные величины (DIN ,ASA), однако в конечном итоге прижилась практика обозначать этот параметр в единицах ISO (International Standards Organization- Международная организация стандартов).

    Для отдельного ПЗС-элемента под реакцией на свет следует понимать генерацию заряда. Очевидно, что чувствительность ПЗС-матрицы складывается из чувствительности всех её пикселов и в целом зависит от двух параметров.

    Первый параметр - интегральная чувствительность , представляющий собой отношение величины фототока (в миллиамперах) к световому потоку (в люменах) от источника излучения, спектральный состав которого соответствует вольфрамовой лампе накаливания. Этот параметр позволяет оценить чувствительность сенсора в целом.

    Второй параметр - монохроматическая чувствительность , то есть отношение величины фототока (в миллиамперах) к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны. Набор всех значений монохроматической чувствительности для интересующей части спектра составляет спектральную чувствительность - зависимость чувствительности от длины волны света. Таким образом, спектральная чувствительность показывает возможности сенсора по регистрации оттенков определённого цвета.

    Понятно, что единицы измерения как интегральной, так и монохромной чувствительности отличаются от популярных в фототехнике обозначений. Именно поэтому производители цифровой фототехники в характеристиках изделия указывают эквивалентную чувствительность ПЗС-матрицы в единицах ISO. А для того, чтобы определить эквивалентную чувствительность, производителю достаточно знать освещённость объекта съёмки, диафрагму и выдержку, и использовать пару формул. Согласно первой, экспозиционное число вычисляется как log 2 (L *S /C), где L - освещённость, S - чувствительность, а C - экспонометрическая константа. Вторая формула определяет экспозиционное число равным 2*log 2 K - log 2 t ., где K - диафрагменное число, а t -выдержка. Нетрудно вывести формулу, позволяющую при известных L , C , K и t вычислить, чему равняется S .

    Чувствительность матрицы является интегральной величиной, зависящей от чувствительности каждого ПЗС-элемента. Ну а чувствительность пиксела матрицы зависит, во-первых, от «подставленной под дождь фотонов» площади светочувствительной области (fill factor), а во-вторых, от квантовой эффективности (quantum efficiency), то есть отношения числа зарегистрированных электронов к числу упавших на поверхность сенсора фотонов.

    В свою очередь, на квантовую эффективность влияет ряд других параметров. Во-первых, это коэффициент отражения - величина, отображающую долю тех фотонов, которые «отрикошетируют» от поверхности сенсора. При возрастании коэффициента отражения доля фотонов, участвующих во внутреннем фотоэффекте, уменьшается.

    Не отражённые от поверхности сенсора фотоны поглотятся, образуя носители заряда, однако часть из них «застрянет» у поверхности, а часть проникнет слишком глубоко в материал ПЗС-элемента. Очевидно, что в обоих случаях они не примут никакого участия в процессе формирования фототока. «Проникающая способность» фотонов в полупроводник, именуемая коэффициентом поглощения , зависит как от материала полупроводника, так и от длины волны падающего света - «длинноволновые» частицы проникают гораздо глубже «коротковолновых». Разрабатывая ПЗС-элемент, необходимо для фотонов с длиной волны, соответствующей видимому излучению, добиться такого коэффициента поглощения, чтобы внутренний фотоэффект происходил вблизи потенциальной ямы, повышая тем самым шанс для электрона попасть в неё.

    Нередко вместо квантовой эффективности используют термин «квантовый выход» (quantum yield), но в действительности данный параметр отображает количество носителей заряда, высвобождаемых при поглощении одного фотона. Разумеется, при внутреннем фотоэффекте основная масса носителей заряда всё же попадает в потенциальную яму ПЗС-элемента, однако определённая часть электронов (или дырок) избегает «ловушки». В числителе формулы, описывающей квантовую эффективность, оказывается именно то количество носителей заряда, которое попало в потенциальную яму.

    Важной характеристикой ПЗС-матрицы является порог чувствительности - параметр регистрирующего свет устройства, характеризующий минимальную величину светового сигнала, который может быть зарегистрирован. Чем меньше этот сигнал, тем выше порог чувствительности. Главным фактором, ограничивающим порог чувствительности, является темновой ток (dark current). Он является следствием термоэлектронной эмиссии и возникает в ПЗС-элементе при подаче потенциала на электрод, под которым формируется потенциальная яма. «Темновым» же данный ток называется потому, что складывается из электронов, попавших в яму при полном отсутствии светового потока. Если световой поток слаб, то величина фототока близка, а порой и меньше, чем величина темнового тока.

    Существует зависимость темнового тока от температуры сенсора- при нагревании матрицы на 9 градусов по Цельсию её темновой ток возрастает в два раза. Для охлаждения матрицы используются различные системы теплоотвода (охлаждения) . В полевых камерах, массогабаритные характеристики которых сильно ограничивают применение систем охлаждения, иногда в качестве теплообменника используется металлический корпус камеры. В студийной технике ограничений по массе и габаритам практически нет, более того, допускается достаточно высокое энергопотребление охлаждающей системы, которые, в свою очередь, делятся на пассивные и активные.

    Пассивные системы охлаждения обеспечивают лишь «сброс» избыточного тепла охлаждаемого устройства в атмосферу. При этом система охлаждения играет роль максимум проводника тепла, обеспечивающего более эффективное его рассеивание. Очевидно, что температура охлаждаемого устройства не может стать ниже, чем температура окружающего воздуха, в чём и заключается основной недостаток пассивных систем.

    Простейшим примером системы пассивного теплообмена является радиатор (heatsink), изготавливаемый из материала с хорошей теплопроводностью, чаще всего- из металла. Поверхность, контактирующая с атмосферой, имеет форму, обеспечивающую как можно большую площадь рассеивания. Общепризнанно максимальной площадью рассеивания обладают игольчатые радиаторы , по форме напоминающие «ежа», утыканного рассеивающими тепло «иголками». Нередко для форсирования теплообмена поверхность радиатора обдувается микровентилятором- похожие устройства, называемые кулерами (cooler, от слова cool- охлаждать), в персональных компьютерах охлаждают процессор. На основании того, что микровентилятор потребляет электроэнергию, использующие его системы называются «активными»., что совершенно неправильно, так как кулеры не могут охладить устройство до температуры меньшей, чем атмосферная. При высокой температуре окружающего воздуха (40градусов и выше) эффективность пассивных систем охлаждения начинает падать.

    Активные системы охлаждения за счет электрических либо химических процессов обеспечивают устройству температуру ниже окружающего воздуха. Фактически, активные системы «вырабатывают холод», правда, при этом в атмосферу выделяется как тепло охлаждаемого устройства, так и тепло системы охлаждения. Классическим примером активного охладителя является обычный холодильник. Впрочем, несмотря на довольно высокий КПД, его массогабаритные характеристики неприемлемы даже для студийной фототехники. Поэтому ее активное охлаждение обеспечивается системами Пельтье , работа которых основана на использовании одноименного эффекта, когда при наличии разности потенциалов на концах двух проводников, изготовленных из разных материалов, на стыке этих проводников (в зависимости от полярности напряжения) будет выделяться, либо поглощаться тепловая энергия. Причиной тому ускорение либо замедление электронов за счет внутренней контактной разности потенциалов стыка проводников.

    При использовании комбинации полупроводников n-типа и p-типа, в которых теплопоглощение производится за счет взаимодействия электронов и «дырок», возникает максимальный теплопроводный эффект. Для его усиления можно применить каскадное объединение элементов Пельтье, причём, поскольку происходит как поглощение тепла, так и выделение, элементы необходимо комбинировать так, чтобы одна сторона охладителя была «горячей», а другая- «холодной». В результате каскадного комбинирования температура «горячей» стороны наиболее удалённого от матрицы элемента Пельтье значительно выше, чем у окружающего воздуха, а его тепло рассеивается в атмосфере при помощи пассивных устройств, то есть радиаторов и кулеров.

    Использующие эффект Пельтье активные системы охлаждения могут понизить температуру сенсора вплоть до нуля градусов, кардинально снижая уровень темнового тока. Однако чрезмерное охлаждение ПЗС-матрицы грозит выпадением конденсата влаги из окружающего воздуха и коротким замыканием электроники. А в ряде случаев предельная разность температур между охлаждаемой и светочувствительной плоскостями матрицы может привести к её недопустимой деформации.

    Однако ни радиаторы, ни кулеры, ни элементы Пельтье не применимы к полевым камерам, ограниченным по весу и габаритам. Вместо этого для такой техники используется метод, основанный на так называемых черных пикселах (dark reference pixels).Эти пикселы представляют собой покрытые непрозрачным материалом столбцы и строки по краям матрицы. Усредненное значение для всех фототоков черных пикселов считается уровнем темнового тока . Очевидно, что при разных условиях эксплуатации (температура окружающей среды и самой камеры, ток аккумуляторов и т. д.), уровень темнового тока будет разным. При использовании его в качестве «точки отсчёта» для каждого пиксела, то есть вычитая его значение из фототока, можно определить, какой именно заряд создан упавшими на ПЗС-элемент фотонами.

    Подавляя тем или иным способом темновой ток, следует помнить о другом факторе, ограничивающем порог чувствительности. Им является тепловой шум (thermal noise), создаваемый даже при отсутствии потенциала на электродах одним лишь хаотичным движением электронов по ПЗС-элементу. Выдержки большой длительности ведут к постепенному накапливанию блуждающих электронов в потенциальной яме, что искажает истинное значение фототока. И чем «длиннее» выдержка, тем больше «заблудившихся» в яме электронов.

    Как известно, светочувствительность плёнки в пределах одной кассеты остаётся постоянной, иными словами- не может изменяться от кадра к кадру. А вот цифровая камера позволяет для каждого снимка устанавливать самое оптимальное значение эквивалентной чувствительности. Достигается это посредством усиления видеосигнала, исходящего с матрицы- в чём-то такая процедура, называемая «повышением эквивалентной чувствительности» , напоминает вращение регулятора громкости проигрывателя.

    Таким образом, при слабом освещении перед пользователем встаёт дилемма- либо повышать эквивалентную чувствительность, либо увеличивать выдержку. При этом в обоих случаях не избежать порчи кадра шумом фиксированного распределения. Правда, опыт показывает, что при «длинной» выдержке снимок портится не так сильно, как при усилении сигнала матрицы. Однако большая продолжительность экспонирования грозит другой проблемой- пользователь может «сдёрнуть» кадр. Поэтому, если пользовать планирует частую съёмку в помещении, то ему следует выбирать фотоаппарат с высокой светосилой объектива, а также мощной и «интеллектуальной» вспышкой.

    Динамический диапазон

    От матрицы требуется способность регистрировать свет как при ярком солнце, так и при слабом комнатном освещении. Поэтому потенциальные ямы матрицы должны быть весьма ёмкими, а также уметь как удерживать минимальное количество электронов при слабой освещенности, так и вмещать большой заряд, получаемый при попадании на сенсор мощного светового потока. Да и изображение, формируемое объективом, зачастую состоит как из ярко освещенных участков, так и из глубоких теней, а сенсор должен уметь регистрировать все их оттенки.

    Возможность сенсора формировать хорошей снимок при разной освещённости и высокой контрастности определяется параметром «динамический диапазон» , характеризующим способность матрицы различать в изображении, проецируемом на её регистрирующую поверхность, самые темные тона от самых светлых. При расширении динамического диапазона количество оттенков снимка будет увеличиваться, а переходы между ними будут максимально соответствовать изображению, формируемому объективом.



    Влияние динамического диапазона на качество кадра (А - широкий динамический диапазон, Б - узкий динамический диапазон)

    Характеристика, описывающая способность ПЗС-элемента накопить определённой величины, называется «глубиной потенциальной ямы» (well depth), и именно от неё зависит динамический диапазон матрицы. Разумеется, при съёмке в условиях слабого освещения на динамический диапазон влияет также порог чувствительности, который, в свою очередь, определяется величиной темнового тока.

    Очевидно, что потери электронов, составляющих фототок, происходят не только в процессе накопления заряда потенциальной ямы, но и при его транспортировке к выходу матрицы. Потери эти вызваны дрейфом электронов, «оторвавшихся» от основного заряда при его перетекании под следующий электрод переноса. Чем меньше количество «оторвавшихся» электронов, тем выше эффективность переноса заряда (charge transfer efficiency). Данный параметр измеряется в процентах и показывает долю заряда, сохранившуюся при «переправе» между ПЗС-элементами.

    Влияние эффективности переноса можно продемонстрировать на следующем примере. Если для матрицы 1024 X 1024 величина данного параметра составит 98%, то чтобы определить значение фототока центрального пиксела на выходе матрицы необходимо 0,98 (объём переносимого заряда) возвести в степень 1024 (количество «переправ» между пикселами) и умножить на 100 (проценты). Результат совершенно неудовлетворительный - от исходного заряда останется каких-то 0.0000001 %. Очевидно, что при росте разрешения требования к эффективности переноса становятся ещё более жёсткими, так как количество «переправ» возрастает. Кроме того, падает скорость считывания кадра, потому что наращивание скорости переноса (для компенсации увеличившегося разрешения) ведёт к неприемлемому росту числа «оторвавшихся» электронов.

    Для того, чтобы достичь приемлемых скоростей считывания кадра при высокой эффективности переноса заряда при конструировании ПЗС-матрицы планируют «заглублённое» размещение потенциальных ям. Благодаря этому электроны не так активно «прилипают» к электродам переноса, и именно для «глубокого залегания» потенциальной ямы в конструкцию ПЗС-элемента вводят n-канал.

    Возвращаясь к вышеприведённому примеру: если в данной матрице 1024 X 1024 эффективность переноса заряда составит 99.999 %, то на выходе сенсора от фототока центрального заряда останется 98.98 % его первоначальной величины. Если разрабатывается матрица с более высоким разрешением, то требуется эффективность переноса заряда 99,99999%.

    Блюминг

    В тех случаях, когда внутренний фотоэффект приводит к избыточному количеству электронов, превышающему глубину потенциальной ямы, заряд ПЗС-элемента начинает «растекаться» по соседним пикселам. На снимках это явление, именуемое «блюмингом» (от английского blooming - размывание), отображается в виде пятен белого цвета и правильной формы, и чем больше избыточных электронов, тем крупнее пятна.

    Подавление блюминга осуществляется посредством системы электронного дренажа (overflow drain), основная задача которой- отвод избыточных электронов из потенциальной ямы. Наиболее известны варианты вертикального дренажа (Vertical Overflow Drain, VOD) и бокового дренажа (Lateral Overflow Drain, VOD).

    В системе с вертикальным дренажом на подложку матрицы подаётся потенциал, значение которого подбирается так, чтобы при переполнении глубины потенциальной ямы избыточные электроны вытекали из неё на подложку и там рассеивались. Минусом такого варианта является уменьшение глубины потенциальной ямы и, соответственно, сужение динамического диапазона ПЗС-элемента. Очевидно также, что данная система неприменима в матрицах с обратной засветкой.



    Вертикальный электронный дренаж

    Система с боковым дренажом использует электроды, препятствующие проникновению электронов потенциальной ямы в «дренажные канавки», из которых происходит рассеивание избыточного заряда. Потенциал на этих электродах подбирается в соответствии с барьером переполнения потенциальной ямы, при этом её глубина не меняется. Однако за счёт электродов дренажа сокращается светочувствительная площадь ПЗС-элемента, поэтому приходится использовать микролинзы.



    Боковой электронный дренаж

    Конечно, необходимость добавлять в сенсор дренажные устройства усложняет его конструкцию, однако искажения кадра, вносимые блюмингом, нельзя игнорировать. Да и электронный затвор невозможно реализовать без дренажа- он играет роль «шторки» при сверхкоротких выдержках, длительность которых меньше интервала, затрачиваемого на перенос заряда из основного параллельного регистра сдвига в буферный параллельный регистр. «Шторка», то есть дренаж, предотвращает проникновение в ямы буферных ПЗС-элементов тех электронов, что образовались в «светочувствительных» пикселах после того, как прошло заданное (и очень короткое) время экспонирования.

    «Залипшие» пикселы

    Из-за технологических погрешностей в некоторых ПЗС-элементах даже самая короткая выдержка ведёт к лавинообразному накоплению электронов в потенциальной яме. На снимке такие пикселы, именуемые «залипшими» (stuck pixels), очень сильно отличаются от окружающих точек как по цвету, так и по яркости, причём, в отличие от шума фиксированного распределения, они появляются при любой выдержке и вне зависимости от нагрева матрицы.

    Удаление залипших пикселов осуществляется посредством встроенного программного обеспечения камеры, обеспечивающего поиск дефектных ПЗС-элементов и запоминание их «координат» в энергонезависимой памяти. При формировании изображения значения дефектных пикселов в расчёт не берутся, их заменяют интерполированным значением соседних точек. Чтобы определить дефектность пиксела в процессе поиска, его заряд сравнивается с эталонным значением, которое тоже хранится в энергонезависимой памяти камеры.

    Размер матрицы по диагонали

    Иногда в ряду прочих параметров какой-либо цифровой камеры указывается размер ПЗС-матрицы по диагонали (чаще всего в долях дюйма). В первую очередь эта величина связана с характеристиками объектива- чем больше габариты сенсора, тем крупнее должно быть формируемое оптикой изображение. Чтобы данное изображение полностью накрывало регистрирующую поверхность матрицы, размеры оптических элементов приходится увеличивать. Если этого не делать и созданная объективом «картинка» окажется меньше сенсора, то периферийные области матрицы окажутся невостребованными. Однако в ряде случаев производители фотокамер не стали указывать, что в их моделях определенная доля мегапикселей оказалась «не у дел».

    А вот в цифровых «зеркалках», созданных на базе 35-милиметровой техники, практически всегда встречается обратная ситуация- изображение, формируемое объективом, перекрывает светочувствительную область матрицы. Вызвано это тем, что сенсоры с габаритами кадра 35-милииметровой плёнки слишком дороги, а приводит к тому, что часть изображения, формируемая объективом, оказывается в буквальном смысле слова «за кадром». В результате характеристики объектива смещаются в «длиннофокусную» область. Поэтому при выборе сменной оптики для цифровой «зеркалки» следует учитывать коэффициент увеличения фокусного расстояния - как правило, он составляет около 1,5. Например, при установке вариообъектива 28–70мм его рабочий диапазон составит 42–105мм.

    Упомянутый коэффициент обладает как положительным, так и негативным влиянием. В частности, усложняется съёмка с большим углом охвата, требующая короткофокусных объективов. Оптика с фокусным расстоянием 18мм и менее стоит очень дорого, а в цифровой «зеркалке» она превращается в тривиальные 27мм. Впрочем, длиннофокусные объективы стоят тоже очень дорого, и при большом фокусном расстоянии, как правило, уменьшается относительное отверстие. А вот недорогой 200- миллиметровый объектив при коэффициенте 1,5 превращается в 300-миллиметровый, при этом у «настоящей» 300-миллиметровой оптики диафрагма порядка f/5,6, у 200-миллиметровой светосила выше- f/4,5.

    Кроме того, для любого объектива характерны такие аберрации, как кривизна поля и дисторсия, выражающиеся в размытости и искривлении изображения в краевых областях кадра. Если габариты матрицы меньше, чем размер формируемого объективом изображения, «проблемные области» просто не будут зарегистрированы сенсором.

    Следует отметить, что чувствительность матрицы связана с габаритами её регистрирующей области. Чем обширнее светочувствительная площадь каждого элемента, тем больше света попадает на него и тем чаще происходит внутренний фотоэффект, таким образом, возрастает чувствительность всего сенсора. Кроме того, пиксел больших габаритов позволяет создать потенциальную яму «повышенной вместимости», что положительно сказывается на широте динамического диапазона. Наглядный тому пример- матрицы цифровых «зеркалок», сравнимые по габаритам с кадром 35-миллиметровой плёнки. Эти сенсоры традиционно отличаются чувствительностью порядка ISO 6400 (!), а динамический диапазон требует АЦП с разрядностью 10-12-бит.

    В то же время матрицы любительских камер обладают динамическим диапазоном, для которого достаточно 8-10-битного АЦП, а чувствительность редко превышает ISO 800. Причиной тому особенности конструкции данной техники. Дело в том, что у фирмы Sony очень мало конкурентов по части производства малогабаритных (1/3, 1/2 и 2/3 дюйма по диагонали) сенсоров для любительской техники, а вызвано это было грамотным подходом к развитию модельного ряда матриц. При разработке очередного поколения матриц с разрешением «на мегапиксел больше» обеспечивалась почти полная совместимость с предыдущими моделями сенсоров, причём как по габаритам, так и по интерфейсу. Соответственно, проектировщикам фотоаппаратов не приходилось «с нуля» разрабатывать объектив и «электронную начинку» камеры.

    Впрочем, с увеличением разрешения буферный параллельный регистр сдвига захватывает всё большую долю площади сенсора, в результате и светочувствительная область, и «вместимость» потенциальной ямы сокращаются.



    Уменьшение светочувствительной области ПЗС-матрицы при росте разрешения.

    Поэтому за каждым «N +1 мегапикселом» кроется кропотливый труд разработчиков- к сожалению, не всегда успешный.

    Аналого-цифровой преобразователь

    Видеосигнал, прошедший сквозь усилитель, необходимо перевести в понятный микропроцессору камеры цифровой формат. Для этого используется аналого-цифровой преобразователь, АЦП (analog to digital convertor, ADC)- устройство, преобразующее аналоговый сигнал в последовательность цифр. Его главной характеристикой является разрядность , то есть количество распознаваемых и кодируемых дискретных уровней сигнала. Чтобы вычислить количество уровней, достаточно возвести двойку в степень разрядности. Например, «разрядность 8 бит» обозначает, что преобразователь в состоянии определить 2 в восьмой степени уровней сигнала и отобразить их в виде 256 различных значений.

    При большой разрядности АЦП можно (теоретически) достигнуть большей глубины цвета (color depth), то есть разрядности обработки цвета, описывающей максимальное количество цветовых оттенков, которое можно воспроизвести. Глубина цвета обычно выражается в битах, а количество оттенков вычисляется так же, как и количество уровней сигнала АЦП. К примеру, при 24-битной глубине цвета можно получить 16777216 оттенков цвета.

    В действительности же глубина цвета для файлов в форматах JPEG либо TIFF, которые используются компьютером для обработки и хранения изображений, ограничена 24 битами (по 8 бит на каждый цветовой канал - синий, красный и зеленый). Поэтому используемые иногда АЦП с разрядностью 10, 12 и даже 16 бит (то есть глубиной цвета 30, 36 и 48 бит) можно ошибочно посчитать «избыточными». Однако динамический диапазон матрицы некоторых моделей цифровой фототехники достаточно широкий, и если фотоаппарат оборудован функцией сохранения кадра в нестандартном формате (30–48 бит), то при дальнейшей компьютерной обработке есть возможность использовать «лишние» биты. Как известно, ошибки в расчёте экспозиции по частоте проявления уступают лишь неточностям фокусировки. И потому возможность компенсировать такие ошибки с помощью «нижних» (в случае недодержки) либо «верхних» (при передержке) бит оказывается весьма кстати. Ну а если экспозиция рассчитана без ошибок, то «сжать» без искажений 30–48 бит в стандартные 24 не представляет собой особо сложную задачу.

    Очевидно, что динамический диапазон ПЗС-матрицы должен являться основанием для повышения разрядности АЦП, так как при узком динамическом диапазоне АЦП с 10-12 битами на канал просто нечего будет распознавать. И зачастую нельзя назвать иначе, чем рекламным трюком упоминания «36-битного» и даже «48-битного» цвета скромной «мыльницы» с матрицей в полдюйма по диагонали, ведь даже 30-битный цвет требует, как минимум, сенсор с диагональю 2/3 дюйма.